Project description:Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34(+) and CD 133(+) stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future.
Project description:BackgroundThe role of patient age in the efficacy of mesenchymal stem cell (MSC) therapy in ischemic cardiomyopathy (ICM) is controversial.ObjectivesThis study sought to determine whether the therapeutic effect of culture-expanded MSCs persists, even in older subjects.MethodsPatients with ICM who received MSCs via transendocardial stem cell injection (TESI) as part of the TAC-HFT (Transendocardial Autologous Cells in Ischemic Heart Failure) (n = 19) and POSEIDON (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis) (n = 30) clinical trials were divided into 2 age groups: younger than 60 and 60 years of age and older. Functional capacity was measured by 6-min walk distance (6MWD) and quality of life using the Minnesota Living With Heart Failure Questionnaire (MLHFQ) score, measured at baseline, 6 months, and 1 year post-TESI. Various cardiac imaging parameters, including absolute scar size, were compared at baseline and 1 year post-TESI.ResultsThe mean 6MWD was similar at baseline and increased at 1 year post-TESI in both groups: 48.5 ± 14.6 m (p = 0.001) for the younger and 35.9 ± 18.3 m (p = 0.038) for the older participants (p = NS between groups). The older group exhibited a significant reduction in MLHFQ score (-7.04 ± 3.54; p = 0.022), whereas the younger than 60 age group had a borderline significant reduction (-11.22 ± 5.24; p = 0.058) from baseline (p = NS between groups). Although there were significant reductions in absolute scar size from baseline to 1 year post-TESI, the effect did not differ by age.ConclusionsMSC therapy with TESI in ICM patients improves 6MWD and MLHFQ score and reduces myocardial infarction size. Importantly, older individuals did not have an impaired response to MSC therapy.
Project description:The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.
Project description:Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) differ in histopathology and prognosis. Although transendocardial delivery of mesenchymal stem cells is safe and provides cardiovascular benefits in both, a comparison of mesenchymal stem cell efficacy in ICM versus DCM has not been done. We conducted a subanalysis of 3 single-center, randomized, and blinded clinical trials: (1) TAC-HFT (Transendocardial Autologous Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure Trial); (2) POSEIDON (A Phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cells Versus Allogeneic Mesenchymal Stem Cells in Patients With Chronic Ischemic Left Ventricular Dysfunction Secondary to Myocardial Infarction); and (3) POSEIDON-DCM (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy). Baseline and 1-year cardiac structure and function and quality-of-life data were compared in a post hoc pooled analysis including ICM (n=46) and DCM (n=33) patients who received autologous or allogeneic mesenchymal stem cells. Ejection fraction improved in DCM by 7% (within-group, P=0.002) compared to ICM (1.5%; within-group, P=0.14; between-group, P=0.003). Similarly, stroke volume increased in DCM by 10.59 mL (P=0.046) versus ICM (-0.2 mL; P=0.73; between-group, P=0.02). End-diastolic volume improved only in ICM (10.6 mL; P=0.04) and end-systolic volume improved only in DCM (17.8 mL; P=0.049). The sphericity index decreased only in ICM (-0.04; P=0.0002). End-diastolic mass increased in ICM (23.1 g; P<0.0001) versus DCM (-4.1 g; P=0.34; between-group, P=0.007). The 6-minute walk test improved in DCM (31.1 m; P=0.009) and ICM (36.3 m; P=0.006) with no between-group difference (P=0.79). The New York Heart Association class improved in DCM (P=0.005) and ICM (P=0.02; between-group P=0.20). The Minnesota Living with Heart Failure Questionnaire improved in DCM (-19.5; P=0.002) and ICM (-6.4; P=0.03; δ between-group difference P=0.042) patients. Mesenchymal stem cell therapy is beneficial in DCM and ICM patients, despite variable effects on cardiac phenotypic outcomes. Whereas cardiac function improved preferentially in DCM patients, ICM patients experienced reverse remodeling. Mesenchymal stem cell therapy enhanced quality of life and functional capacity in both etiologies. URL: http://www.clinicaltrials.gov. Unique identifiers: TAC-HFT: NCT00768066, POSEIDON: NCT01087996, POSEIDON-DCM: NCT01392625.
Project description:BACKGROUND:Non-ischemic dilated cardiomyopathy (NIDCM) responds variably to intramyocardial injection of mesenchymal stem cells (MSCs). We hypothesized that NIDCM genotype may influence responsiveness to MSC therapy and performed genotyping on all patients in the POSEIDON-DCM trial. METHODS:POSEIDON-DCM patients (n = 34) underwent genetic sequence analysis and deletion/duplication testing. The results were classified as positive for pathological variants (PV+; n = 8), negative for any variants (V-; n = 6), or as variants of uncertain significance (VUS; n = 20). All outcomes of therapy were analysed for each category of genetic results. FINDINGS:The 3 groups were indistinguishable at baseline with regard to ejection fraction (EF), demographics, medication use, or functional parameters. V- patients had an increase in EF at 12 months: +13.6% (IQR = +7.8%; +20.5%; p = 0.002), compared with VUS (+6.5%; IQR = +0.9%, +11.1%; p = 0.005) and PV+(-5.9%; IQR = -12.7%, +1.0; p = 0.2; p = 0.01 between groups). Six-minute walk distance improved in V- patients, but not in VUS and PV+. V- patients improved MLHFQ, compared to the other 2 groups, which did not improve over time. EPCCFUs increased by 9.7 ± 1.9 in V- (p = 0.009) compared to VUS and PV+ patients. V- patients had one-year survival (100%) compared with VUS (85%) and PV+ (40%; p = 0.015 log-rank). Similarly, MACE rates were lower in V- (0%) than PV+ (61.9%) or VUS (42.2%; p = 0.021 log-rank). INTERPRETATION:Our findings support the concept that the genetic profile of NIDCM patients plays a role in responsiveness to MSC therapy, with V- patients more likely to benefit and the converse for PV+. This observation emphasizes the need for further genetic studies, because of important implications for the management of NIDCM syndromes.
Project description:Treatment of ischemic cardiomyopathy caused by myocardial infarction (MI) using mesenchymal stem cell (MSC) transplantation is a widely researched field, with promising clinical application. However, the low survival rate of transplanted cells has a severe impact on treatment outcome. Currently, research is focused on investigating the strategy of combining genetic engineering, tissue engineering materials, and drug/hypoxia preconditioning to improve ischemic cardiomyopathy treatment outcome using MSC transplantation treatment (MSCTT). This review discusses the application and progress of these techniques.
Project description:Although tremendous progress has been made in conventional treatment for ischemic heart disease, it still remains a major cause of death and disability. Cell-based therapeutics holds an exciting frontier of research for complete cardiac recuperation. The capacity of diverse stem and progenitor cells to stimulate cardiac renewal has been analysed, with promising results in both pre-clinical and clinical trials. Mesenchymal stem cells have been ascertained to have regenerative ability via a variety of mechanisms, including differentiation from the mesoderm lineage, immunomodulatory properties, and paracrine effects. Also, their availability, maintenance, and ability to replenish endogenous stem cell niches have rendered them suitable for front-line research. This review schemes to outline the use of mesenchymal stem cell therapeutics for ischemic heart disease, their characteristics, the potent mechanisms of mesenchymal stem cell-based heart regeneration, and highlight preclinical data. Additionally, we discuss the results of the clinical trials to date as well as ongoing clinical trials on ischemic heart disease.
Project description:BackgroundStem cell therapy is the transplantation of human cells to aid the healing of damaged or wounded tissues and cells. Only a few small-scale trials have been conducted to investigate stem cell therapy for non-ischemic dilated cardiomyopathy (DCM). We aimed to perform a systematic review and meta-analysis to assess the efficacy and safety of stem cell therapy for DCM.MethodsA comprehensive search of the databases of PubMed, Embase, Web of Science Core Collection, Cochrane Library, and ProQuest was conducted from their inception to June 30, 2024, to access randomized controlled trials (RCTs) that were centered on stem cell therapy for DCM. The primary outcome was left ventricular ejection fraction (LVEF), and the secondary outcomes included left ventricular end-diastolic dimension (LVEDD), left ventricular end-diastolic volume (LVEDV), 6-min walk test (6MWT), NYHA functional classification, quality of life (QoL) such as Minnesota Living with Heart Failure Questionnaire (MLHFQ) and Kansas City Cardiomyopathy Questionnaire (KCCQ), N-terminal pro-brain natriuretic peptide (NT-proBNP), and VO2 peak. Moreover, major adverse cardiovascular events (MACEs) were also recorded. The Cochrane risk-of-bias assessment tool was used to evaluate the quality of the included RCTs, and the certainty of the evidence was assessed using the GRADE method. Sensitivity analysis was taken into consideration to determine the stability of the results. This review was registered with PROSPERO (CRD42024568912).ResultsEleven RCTs involving 637 participants were included in the quantitative analysis. The results indicated that there was a significant increase in mean LVEF (MD = 4.84, 95% CI 3.25-6.42, P < 0.00001) and considerable decrease in LVEDV (MD = - 29.51, 95% CI - 58.07 to - 0.95, P = 0.04) and NT-proBNP (MD = - 737.55, 95% CI - 904.28 to - 570.82, P < 0.00001) in DCM patients treated with stem cell therapy compared with controls. Stem cell therapy was also related to the improvement in functional capacity, as evaluated by 6MWT (MD = 44.32, 95% CI 34.70 - 53.94, P < 0.00001) and NYHA functional classification (MD = - 0.63, 95% CI - 0.96 to - 0.30, P = 0.0002). It also had positive effects on improving QoL, including significantly decreasing MLHFQ score (MD = - 16.60, 95% CI - 26.57 to - 6.63, P = 0.001) and increasing the KCCQ score (MD = 14.76, 95% CI 7.76 - 21.76, P < 0.0001). No significant differences were observed in LVEDD, VO2 peak, and MACEs between the two groups. The GRADE analysis revealed that the evidence was graded from low to moderate. Sensitivity analysis of the results suggested that the results were stable.ConclusionThe systematic review and meta-analysis indicates that stem cell therapy may be an effective and safe approach to improve cardiac function and quality of life in DCM patients. Nevertheless, given the limitations of existing studies, larger well-designed RCTs are required to confirm and support our findings.
Project description:Despite recent developments in innovative treatment strategies, stroke remains one of the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much attention due to its potential for exerting significant therapeutic effects on stroke patients. Various types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced neurological outcomes in animal stroke models. These stem cells have also been tested via clinical trials involving stroke patients. In this article, the authors review potential molecular mechanisms underlying neural recovery associated with stem cell treatment, as well as recent advances in stem cell therapy, with particular reference to clinical trials and future prospects for such therapy in treating stroke.
Project description:Dilated cardiomyopathy is a serious and life-threatening disorder in children. It is the most common form of pediatric cardiomyopathy. Therapy for this condition has varied little over the last several decades and mortality continues to be high. Currently, children with dilated cardiomyopathy are treated with pharmacological agents and mechanical support, but most require heart transplantation and survival rates are not optimal. The lack of common treatment guidelines and inadequate survival rates after transplantation necessitates more therapeutic clinical trials. Stem cell and cell-based therapies offer an innovative approach to restore cardiac structure and function towards normal, possibly reducing the need for aggressive therapies and cardiac transplantation. Mesenchymal stem cells and cardiac stem cells may be the most promising cell types for treating children with dilated cardiomyopathy. The medical community must begin a systematic investigation of the benefits of current and novel treatments such as stem cell therapies for treating pediatric dilated cardiomyopathy.