Unknown

Dataset Information

0

Retinal Transcriptome and Cellular Landscape in Relation to the Progression of Diabetic Retinopathy.


ABSTRACT:

Purpose

Previous studies that identify putative genes associated with diabetic retinopathy are only focusing on specific clinical stages, thus resulting genes are not necessarily reflective of disease progression. This study identified genes associated with the severity level of diabetic retinopathy using the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to profile immune and retinal cell landscape in progressive diabetic retinopathy using a machine learning deconvolution approach.

Methods

This study used a published transcriptomic dataset (GSE160306) from macular regions of donors with different degrees of diabetic retinopathy (10 healthy controls, 10 cases of diabetes, 9 cases of nonproliferative diabetic retinopathy, and 10 cases of proliferative diabetic retinopathy or combined with diabetic macular edema). LRT and OLR models were applied to identify severity-associated genes. In addition, CIBERSORTx was used to estimate proportional changes of immune and retinal cells in progressive diabetic retinopathy.

Results

By controlling for gender and age using LRT and OLR, 50 genes were identified to be significantly increased in expression with the severity of diabetic retinopathy. Functional enrichment analyses suggested these severity-associated genes are related to inflammation and immune responses. CCND1 and FCGR2B are further identified as key regulators to interact with many other severity-associated genes and are crucial to inflammation. Deconvolution analyses demonstrated that the proportions of memory B cells, M2 macrophages, and Müller glia were significantly increased with the progression of diabetic retinopathy.

Conclusions

These findings demonstrate that deep analyses of transcriptomic data can advance our understanding of progressive ocular diseases, such as diabetic retinopathy, by applying LRT and OLR models as well as bulk gene expression deconvolution.

SUBMITTER: Wang JH 

PROVIDER: S-EPMC9424969 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Retinal Transcriptome and Cellular Landscape in Relation to the Progression of Diabetic Retinopathy.

Wang Jiang-Hui JH   Wong Raymond C B RCB   Liu Guei-Sheung GS  

Investigative ophthalmology & visual science 20220801 9


<h4>Purpose</h4>Previous studies that identify putative genes associated with diabetic retinopathy are only focusing on specific clinical stages, thus resulting genes are not necessarily reflective of disease progression. This study identified genes associated with the severity level of diabetic retinopathy using the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to profile immune and retinal cell landscape in progressive diabetic retinopathy using a machine  ...[more]

Similar Datasets

| S-EPMC7161968 | biostudies-literature
| S-EPMC10148661 | biostudies-literature
| S-EPMC6477903 | biostudies-literature
| S-EPMC10853872 | biostudies-literature
| S-EPMC8807828 | biostudies-literature
2025-02-24 | GSE290024 | GEO
| S-EPMC11817850 | biostudies-literature
| S-EPMC8472497 | biostudies-literature
| S-EPMC5813018 | biostudies-literature
| S-EPMC11636663 | biostudies-literature