Project description:Signals from lower cortical visual areas travel to higher-order areas for further processing through cortico-cortical projections, organized in a hierarchical manner. These signals can also be transferred between cortical areas via alternative cortical transthalamic routes involving higher-order thalamic nuclei like the pulvinar. It is unknown whether the organization of transthalamic pathways may reflect the cortical hierarchy. Two axon terminal types have been identified in corticothalamic (CT) pathways: the types I (modulators) and II (drivers) characterized by thin axons with small terminals and by thick axons and large terminals, respectively. In cats, projections from V1 to the pulvinar complex comprise mainly type II terminals, whereas those from extrastriate areas include a combination of both terminals suggesting that the nature of CT terminals varies with the hierarchical order of visual areas. To test this hypothesis, distribution of CT terminals from area 21a was charted and compared with 3 other visual areas located at different hierarchical levels. Results demonstrate that the proportion of modulatory CT inputs increases along the hierarchical level of cortical areas. This organization of transthalamic pathways reflecting cortical hierarchy provides new and fundamental insights for the establishment of more accurate models of cortical signal processing along transthalamic cortical pathways.
Project description:Two types of corticothalamic (CT) terminals reach the pulvinar nucleus of the thalamus, and their distribution varies according to the hierarchical level of the cortical area they originate from. While type 2 terminals are more abundant at lower hierarchical levels, terminals from higher cortical areas mostly exhibit type 1 axons. Such terminals also evoke different excitatory postsynaptic potential dynamic profiles, presenting facilitation for type 1 and depression for type 2. As the pulvinar is involved in the oscillatory regulation between intercortical areas, fundamental questions about the role of these different terminal types in the neuronal communication throughout the cortical hierarchy are yielded. Our theoretical results support that the co-action of the two types of terminals produces different oscillatory rhythms in pulvinar neurons. More precisely, terminal types 1 and 2 produce alpha-band oscillations at a specific range of connectivity weights. Such oscillatory activity is generated by an unstable transition of the balanced state network's properties that it is found between the quiescent state and the stable asynchronous spike response state. While CT projections from areas 17 and 21a are arranged in the model as the empirical proportion of terminal types 1 and 2, the actions of these two cortical connections are antagonistic. As area 17 generates low-band oscillatory activity, cortical area 21a shifts pulvinar responses to stable asynchronous spiking activity and vice versa when area 17 produces an asynchronous state. To further investigate such oscillatory effects through corticothalamo-cortical projections, the transthalamic pathway, we created a cortical feedforward network of two cortical areas, 17 and 21a, with CT connections to a pulvinar-like network with two cortico-recipient compartments. With this model, the transthalamic pathway propagates alpha waves from the pulvinar to area 21a. This oscillatory transfer ceases when reciprocal connections from area 21a reach the pulvinar, closing the CT loop. Taken together, results of our model suggest that the pulvinar shows a bi-stable spiking activity, oscillatory or regular asynchronous spiking, whose responses are gated by the different activation of cortico-pulvinar projections from lower to higher-order areas such as areas 17 and 21a.
Project description:Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs). Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy.
Project description:ObjectiveThis study aims to evaluate the efficacy and safety of deep brain stimulation (DBS) of the medial pulvinar nucleus (PuM) in reducing seizure frequency and addressing comorbidities in patients with drug and vagal nerve-resistant focal epilepsy.MethodsThis is an open-label prospective treatment trial with a planned enrollment of 12 patients suffering from medically refractory epilepsy (Clinical trial gov NCT04692701), for which the interim 12-month post-implantation results for the first 6 patients are being reported. Inclusion criteria were focal epilepsy not suitable for or after failed surgical intervention and previous failure of neurostimulation therapies (vagus nerve stimulation or anterior thalamic nucleus DBS). Evaluations included seizure diaries, neuropsychological assessments, and scales for depression, anxiety, quality of life, and seizure severity. PuM DBS was performed using ROSA robotic assistance, with follow-ups every 3 months for 1 year.ResultsOut of six patients, five completed 1-year follow-up (one patient died prematurely). A non-significant trend toward seizure reduction was observed at 6 months, becoming more pronounced at 1 year (mean reduction: 45%; responders: 2/5). Seizure severity significantly improved (p = 0.02), with a reduction in the NHS3 scale scores. Quality of life improved significantly at 1 year (p = 0.03). Psychiatric assessments indicated a non-significant trend toward improvement in depression (mean improvement: 26%) and anxiety (mean improvement: 20%) scores. Neuropsychological testing showed stable or improved cognitive performance in three out of five patients. Adverse events included one case of cerebral hemorrhage, one infection leading to device removal, and one possible SUDEP.SignificancePreliminary results suggest that PuM DBS may offer a promising therapeutic option for reducing seizure severity and improving quality of life and cognitive functions in patients with drug-resistant epilepsy. Despite the small sample size and the presence of serious adverse events, the findings warrant further investigation with larger cohorts to confirm these trends and optimize the treatment protocol.
Project description:Deep brain stimulation (DBS), specifically thalamic DBS, has achieved promising results to reduce seizure severity and frequency in pharmacoresistant epilepsies, thereby establishing it for clinical use. The mechanisms of action are, however, still unknown. We evidenced the brain networks directly modulated by centromedian (CM) nucleus-DBS and responsible for clinical outcomes in a cohort of patients uniquely diagnosed with generalized pharmacoresistant epilepsy. Preoperative imaging and long-term (2-11 years) clinical data from ten generalized pharmacoresistant epilepsy patients (mean age at surgery = 30.8 ± 5.9 years, 4 female) were evaluated. Volume of tissue activated (VTA) was included as seeds to reconstruct the targeted network to thalamic DBS from diffusion and functional imaging data. CM-DBS clinical outcome improvement (> 50%) appeared in 80% of patients and was tightly related to VTAs interconnected with a reticular system network encompassing sensorimotor and supplementary motor cortices, together with cerebellum/brainstem. Despite methodological differences, both structural and functional connectomes revealed the same targeted network. Our results demonstrate that CM-DBS outcome in generalized pharmacoresistant epilepsy is highly dependent on the individual connectivity profile, involving the cerebello-thalamo-cortical circuits. The proposed framework could be implemented in future studies to refine stereotactic implantation or the parameters for individualized neuromodulation.
Project description:Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.
Project description:The FOXP2/Foxp2 gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei. Synaptic connections established by both L6a and L6b FOXP2+ PCs have low release probabilities and respond strongly to acetylcholine (ACh), triggering action potential (AP) trains. Notably, L6b FOXP2- PCs are more sensitive to ACh than L6a, and L6b FOXP2+ PCs also react robustly to dopamine. Thus, FOXP2 labels L6a and L6b CT PCs, which are precisely regulated by neuromodulators, highlighting their roles as potent modulators of thalamic activity.
Project description:Epileptogenesis is the gradual process by which the healthy brain develops epilepsy. However, the neuronal circuit changes that underlie epileptogenesis are not well understood. Unfortunately, current chemically or electrically induced epilepsy models suffer from lack of cell specificity, so it is seldom known which cells were activated during epileptogenesis. We therefore sought to develop an optogenetic variant of the classical kindling model of epilepsy in which activatable cells are both genetically defined and fluorescently tagged. We briefly optogenetically activated pyramidal cells (PCs) in awake behaving mice every two days and conducted a series of experiments to validate the effectiveness of the model. Although initially inert, brief optogenetic stimuli eventually elicited seizures that increased in number and severity with additional stimulation sessions. Seizures were associated with long-lasting plasticity, but not with tissue damage or astrocyte reactivity. Once optokindled, mice retained an elevated seizure susceptibility for several weeks in the absence of additional stimulation, indicating a form of long-term sensitization. We conclude that optokindling shares many features with classical kindling, with the added benefit that the role of specific neuronal populations in epileptogenesis can be studied. Links between long-term plasticity and epilepsy can thus be elucidated.
Project description:BackgroundAlthough a central role of the thalamus for sleep regulation is undisputed, the exact localization of the crucial structures within the thalamus remains controversial.Case presentationHere we report a 35 year old woman with no prior comorbidities who developed severe and persistent hypersomnia with long sleep time after a small right-sided MRI-verified thalamic stroke affecting the dorsal part of the pulvinar and the dorsolateral boarders of the dorsomedial nuclei.ConclusionThe observed symptoms suggest a crucial role of posterior thalamus but not the midline parts of the thalamus in sleep-wake control.
Project description:Deep brain stimulation (DBS) is a promising treatment for drug-refractory epilepsies (DRE) when targeting the anterior nuclei of thalamus (ANT). However, targeting other thalamic nuclei, such as the pulvinar, shows therapeutic promise. Our pioneering case study presents the application of ambulatory seizure monitoring using spectral fingerprinting (12.15-17.15 Hz) recorded through Medtronic Percept DBS implanted bilaterally in the medial pulvinar thalami. This technology offers unprecedented opportunities for real-time monitoring of seizure burden and thalamocortical network modulation for effective seizure reduction in patients with bilateral mesial temporal and temporal plus epilepsies that are not suitable for resection.