Unknown

Dataset Information

0

Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method.


ABSTRACT:

Background

The diagnosis of cardiac abnormalities based on heart sound signal is a research hotspot in recent years. The early diagnosis of cardiac abnormalities has a crucial significance for the treatment of heart diseases.

Methods

For the sake of achieving more practical clinical applications of automatic recognition of cardiac abnormalities, here we proposed a novel fuzzy matching feature extraction method. First of all, a group of Gaussian wavelets are selected and then optimized based on a template signal. Convolutional features of test signal and the template signal are then computed. Matching degree and matching energy features between template signal and test signal in time domain and frequency domain are then extracted. To test performance of proposed feature extraction method, machine learning algorithms such as K-nearest neighbor, support vector machine, random forest and multilayer perceptron with grid search parameter optimization are constructed to recognize heart disease using the extracted features based on phonocardiogram signals.

Results

As a result, we found that the best classification accuracy of random forest reaches 96.5% under tenfold cross validation using the features extracted by the proposed method. Further, Mel-Frequency Cepstral Coefficients of phonocardiogram signals combing with features extracted by our algorithm are evaluated. Accuracy, sensitivity and specificity of integrated features reaches 99.0%, 99.4% and 99.7% respectively when using support vector machine, which achieves the best performance among all reported algorithms based on the same dataset. On several common features, we used independent sample t-tests. The results revealed that there are significant differences (p < 0.05) between 5 categories.

Conclusion

It can be concluded that our proposed fuzzy matching feature extraction method is a practical approach to extract powerful and interpretable features from one-dimensional signals for heart sound diagnostics and other pattern recognition task.

SUBMITTER: Yang W 

PROVIDER: S-EPMC9439280 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method.

Yang Wanrong W   Xu Jiajie J   Xiang Junhong J   Yan Zhonghong Z   Zhou Hengyu H   Wen Binbin B   Kong Hai H   Zhu Rui R   Li Wang W  

BMC medical informatics and decision making 20220902 1


<h4>Background</h4>The diagnosis of cardiac abnormalities based on heart sound signal is a research hotspot in recent years. The early diagnosis of cardiac abnormalities has a crucial significance for the treatment of heart diseases.<h4>Methods</h4>For the sake of achieving more practical clinical applications of automatic recognition of cardiac abnormalities, here we proposed a novel fuzzy matching feature extraction method. First of all, a group of Gaussian wavelets are selected and then optim  ...[more]

Similar Datasets

| S-EPMC4783950 | biostudies-literature
| S-EPMC3737526 | biostudies-literature
| S-EPMC10869842 | biostudies-literature
| S-EPMC7527634 | biostudies-literature
| S-EPMC8675669 | biostudies-literature
| S-EPMC11784719 | biostudies-literature
| S-EPMC8386852 | biostudies-literature
| S-EPMC10590983 | biostudies-literature
| S-EPMC218691 | biostudies-literature
| S-EPMC6505704 | biostudies-literature