Unknown

Dataset Information

0

A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues.


ABSTRACT: In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogenic differentiation of human adipose-derived stem cells (hASCs). By using a modified bioprinting process supplemented with a nozzle consisting of a single-core channel and double-sheath channels, we can achieve three different types of MTJ units, composed of muscle, tendon, and interface zones. Our results indicated that the bioprinted dECM-based constructs induced hASCs to myogenic and tenogenic differentiation. In addition, a significantly higher MTJ-associated gene expression was detected at the MTJ interface with a cell-mixing zone than in the other interface models. Based on the results, the bioprinted MTJ model can be a potential platform for understanding the interaction between muscle and tendon cells, and even the bioprinting method can be extensively applied to obtain complex tissues.

SUBMITTER: Kim WJ 

PROVIDER: S-EPMC9472009 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues.

Kim Won Jin WJ   Kim Geun Hyung GH  

Bioengineering & translational medicine 20220405 3


In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogen  ...[more]

Similar Datasets

| S-EPMC7141931 | biostudies-literature
| S-EPMC3695625 | biostudies-literature
2021-07-12 | GSE166468 | GEO
| S-EPMC7204512 | biostudies-literature
| S-EPMC8851264 | biostudies-literature
| S-EPMC7530093 | biostudies-literature
| S-EPMC10013802 | biostudies-literature
| S-EPMC5661263 | biostudies-literature
| S-EPMC8219707 | biostudies-literature
| S-EPMC4409544 | biostudies-literature