Unknown

Dataset Information

0

Rational design via dual-site aliovalent substitution leads to an outstanding IR nonlinear optical material with well-balanced comprehensive properties.


ABSTRACT: The acquisition of a non-centrosymmetric (NCS) structure and achieving a nice trade-off between a large energy gap (E g > 3.5 eV) and a strong second-harmonic generation (SHG) response (d eff > 1.0 × benchmark AgGaS2) are two formidable challenges in the design and development of infrared nonlinear optical (IR-NLO) candidates. In this work, a new quaternary NCS sulfide, SrCdSiS4, has been rationally designed using the centrosymmetric SrGa2S4 as the template via a dual-site aliovalent substitution strategy. SrCdSiS4 crystallizes in the orthorhombic space group Ama2 (no. 40) and features a unique two-dimensional [CdSiS4]2- layer constructed from corner- and edge-sharing [CdS4] and [SiS4] basic building units (BBUs). Remarkably, SrCdSiS4 displays superior IR-NLO comprehensive performances, and this is the first report on an alkaline-earth metal-based IR-NLO material that breaks through the incompatibility between a large E g (>3.5 eV) and a strong phase-matching d eff (>1.0 × AgGaS2). In-depth mechanism explorations strongly demonstrate that the synergistic effect of distorted tetrahedral [CdS4] and [SiS4] BBUs is the main origin of the strong SHG effect and large birefringence. This work not only provides a high-performance IR-NLO candidate, but also offers a feasible chemical design strategy for constructing NCS structures.

SUBMITTER: Yang HD 

PROVIDER: S-EPMC9491097 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rational design <i>via</i> dual-site aliovalent substitution leads to an outstanding IR nonlinear optical material with well-balanced comprehensive properties.

Yang He-Di HD   Ran Mao-Yin MY   Zhou Sheng-Hua SH   Wu Xin-Tao XT   Lin Hua H   Zhu Qi-Long QL  

Chemical science 20220907 36


The acquisition of a non-centrosymmetric (NCS) structure and achieving a nice trade-off between a large energy gap (<i>E</i> <sub>g</sub> > 3.5 eV) and a strong second-harmonic generation (SHG) response (<i>d</i> <sub>eff</sub> > 1.0 × benchmark AgGaS<sub>2</sub>) are two formidable challenges in the design and development of infrared nonlinear optical (IR-NLO) candidates. In this work, a new quaternary NCS sulfide, SrCdSiS<sub>4</sub>, has been rationally designed using the centrosymmetric SrGa  ...[more]

Similar Datasets

| S-EPMC7066663 | biostudies-literature
| S-EPMC10115781 | biostudies-literature
| S-EPMC9130896 | biostudies-literature
| S-EPMC7561186 | biostudies-literature
| S-EPMC7376528 | biostudies-literature
| S-EPMC9059328 | biostudies-literature
| S-EPMC6273645 | biostudies-literature
| S-EPMC9093175 | biostudies-literature
| S-EPMC7702042 | biostudies-literature
| S-EPMC7196277 | biostudies-literature