Unknown

Dataset Information

0

Comparable bidirectional neutrophil immune dysregulation between Kawasaki disease and severe COVID-19.


ABSTRACT: Kawasaki disease (KD), a multisystem inflammatory syndrome that occurs in children, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) may share some overlapping mechanisms. The purpose of this study was to analyze the differences in single-cell RNA sequencing between KD and COVID-19. We performed single-cell RNA sequencing in KD patients (within 24 hours before IVIG treatment) and age-matched fever controls. The single-cell RNA sequencing data of COVID-19, influenza, and health controls were downloaded from the Sequence Read Archive (GSE149689/PRJNA629752). In total, 22 single-cell RNA sequencing data with 102,355 nuclei were enrolled in this study. After performing hierarchical and functional clustering analyses, two enriched gene clusters demonstrated similar patterns in severe COVID-19 and KD, heightened neutrophil activation, and decreased MHC class II expression. Furthermore, comparable dysregulation of neutrophilic granulopoiesis representing two pronounced hyperinflammatory states was demonstrated, which play a critical role in the overactivated and defective aging program of granulocytes, in patients with KD as well as those with severe COVID-19. In conclusion, both neutrophil activation and MHC class II reduction play a crucial role and thus may provide potential treatment targets for KD and severe COVID-19.

SUBMITTER: Chen KD 

PROVIDER: S-EPMC9499176 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparable bidirectional neutrophil immune dysregulation between Kawasaki disease and severe COVID-19.

Chen Kuang-Den KD   Huang Ying-Hsien YH   Wu Wei-Sheng WS   Chang Ling-Sai LS   Chu Chiao-Lun CL   Kuo Ho-Chang HC  

Frontiers in immunology 20220908


Kawasaki disease (KD), a multisystem inflammatory syndrome that occurs in children, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) may share some overlapping mechanisms. The purpose of this study was to analyze the differences in single-cell RNA sequencing between KD and COVID-19. We performed single-cell RNA sequencing in KD patients (within 24 hours before IVIG treatment) and age-matched fever controls. The single-cell RNA sequencing data of COVID-19, influenza, a  ...[more]

Similar Datasets

| S-EPMC8016181 | biostudies-literature
| S-EPMC7172841 | biostudies-literature
2020-10-22 | GSE159812 | GEO
2020-10-29 | E-MTAB-9357 | biostudies-arrayexpress
| S-EPMC8224314 | biostudies-literature
| S-BSST416 | biostudies-other
2021-06-04 | GSE175996 | GEO
| S-EPMC10449257 | biostudies-literature
| S-EPMC7993139 | biostudies-literature
| S-EPMC7351415 | biostudies-literature