Ontology highlight
ABSTRACT: Background
Diagnostic testing plays a critical role in the global COVID-19 response. Polymerase chain reaction (PCR) tests are highly accurate, but in resource-limited settings, limited capacity has led to testing delays; whereas lateral flow assays (LFAs) offer opportunities for rapid and affordable testing. We examined the potential epidemiological impact of different strategies for LFA deployment.Methods
We developed a deterministic compartmental model of SARS-CoV-2 transmission, parameterised to resemble a large Indian city. We assumed that PCR would be used to test symptomatic individuals presenting to outpatient settings for care. We examined how the second epidemic wave in India could have been mitigated by LFA deployment in its early stages by comparing two strategies: (i) community-based screening, using LFAs to test a proportion of the population, irrespective of symptoms (in addition to symptom-driven PCR), and (ii) symptom-driven outpatient testing, using LFAs to replace PCR.Results
Model projections suggest that a stock of 25 million LFAs, used over a 600-day period in a city of 20 million people, would reduce the cumulative symptomatic incidence of COVID-19 by 0.44% if used for community-based screening, and by 13% if used to test symptomatic outpatients, relative to a no-LFA, PCR-only scenario. Sensitivity analysis suggests that outpatient testing would be more efficient in reducing transmission than community-based screening, when at least 5% of people with symptomatic COVID-19 seek care, and at least 10% of SARS-CoV-2 infections develop symptoms. Under both strategies, however, 2% of the population would be unnecessarily isolated.Interpretation
In this emblematic setting, LFAs would reduce transmission most efficiently when used to test symptomatic individuals in outpatient settings. To avoid large numbers of unnecessary isolations, mass testing with LFAs should be considered as a screening tool, with follow-up confirmation. Future work should address strategies for targeted community-based LFA testing, such as contact tracing.
SUBMITTER: Baik Y
PROVIDER: S-EPMC9511882 | biostudies-literature | 2022 Sep
REPOSITORIES: biostudies-literature
Epidemics 20220926
<h4>Background</h4>Diagnostic testing plays a critical role in the global COVID-19 response. Polymerase chain reaction (PCR) tests are highly accurate, but in resource-limited settings, limited capacity has led to testing delays; whereas lateral flow assays (LFAs) offer opportunities for rapid and affordable testing. We examined the potential epidemiological impact of different strategies for LFA deployment.<h4>Methods</h4>We developed a deterministic compartmental model of SARS-CoV-2 transmissi ...[more]