Unknown

Dataset Information

0

Boosting cisplatin chemotherapy by nanomotor-enhanced tumor penetration and DNA adducts formation.


ABSTRACT: Despite many nano-based strategies devoted to delivering cisplatin for tumor therapy, its clinical benefits are compromised by poor tissue penetration and limited DNA adducts formation of the drug. Herein, a cisplatin loading nanomotor based janus structured Ag-polymer is developed for cisplatin delivery of deeper tissue and increased DNA adducts formation. The nanomotor displayed a self-propelled tumor penetration fueled by hydrogen peroxide (H2O2) in tumor tissues, which is catalytically decomposed into a large amount of oxygen bubbles by Ag nanoparticles (NPs). Notably, cisplatin could elevate the intracellular H2O2 level through cascade reactions, further promote the degradation of Ag NPs accompanied with the Ag+ release, which could downregulate intracellular Cl- through the formation of AgCl precipitate, thereby enhancing cisplatin dechlorination and Pt-DNA formation. Moreover, polymer can also inhibit the activity of ALKBH2 (a Fe2+-dependent DNA repair enzyme) by chelating intracellular Fe2+ to increase the proportion of irreparable Pt-DNA cross-links. It is found that deep tissue penetration, as well as the increased formation and maintenance of Pt-DNA adducts induced by the nanomotor afford 80% of tumor growth inhibition with negligible toxicity. This work provides an important perspective of resolving chemotherapeutic barriers for boosting cisplatin therapy.

SUBMITTER: Xu L 

PROVIDER: S-EPMC9523964 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Boosting cisplatin chemotherapy by nanomotor-enhanced tumor penetration and DNA adducts formation.

Xu Lihua L   Zhang Kaixiang K   Ma Xing X   Li Yingying Y   Jin Yajie Y   Liang Chenglin C   Wang Yong Y   Duan Wendi W   Zhang Hongling H   Zhang Zhenzhong Z   Shi Jinjin J   Liu Junjie J   Wang Yunlong Y   Li Wentao W  

Journal of nanobiotechnology 20220929 1


Despite many nano-based strategies devoted to delivering cisplatin for tumor therapy, its clinical benefits are compromised by poor tissue penetration and limited DNA adducts formation of the drug. Herein, a cisplatin loading nanomotor based janus structured Ag-polymer is developed for cisplatin delivery of deeper tissue and increased DNA adducts formation. The nanomotor displayed a self-propelled tumor penetration fueled by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in tumor tissues, which  ...[more]

Similar Datasets

| S-EPMC9417135 | biostudies-literature
| S-EPMC11830786 | biostudies-literature
| S-EPMC5131569 | biostudies-literature
| S-EPMC3570664 | biostudies-literature
2016-10-20 | GSE84637 | GEO
| S-EPMC9715748 | biostudies-literature
| S-EPMC8264939 | biostudies-literature
| S-EPMC10091360 | biostudies-literature
| S-EPMC5810237 | biostudies-literature
| S-EPMC10898354 | biostudies-literature