Ontology highlight
ABSTRACT: Background
Single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) is one of the most effective bariatric procedures in the treatment of type 2 diabetes mellitus (T2DM). However, the mechanisms by which SADI-S improves T2DM are not well-known. Objective
To explore the effects of SADI-S on metabolites in the stool of rats with T2DM. Methods
Twenty rats were fed on high-fat diet and administered with a low-dose (30mg/kg) of streptozotocin to establish T2DM models. The rats were then randomly assigned to the SADI-S group (n=10) and sham operation group (n=9). Stool samples were collected from all rats at 8 weeks after surgery and stored at -80 °C. Metabolomics analysis was performed to identify differential metabolites through ultra- performance liquid chromatography-mass spectrometry. Results
At 8-week after surgery, rats of the SADI-S group showed significantly decreased fasting blood glucose, glucose tolerance test 2-hour, glycated haemoglobin, and body weight compared with those of the sham group. A total of 245 differential metabolites were identified between the two groups. Among them, 16 metabolites such as branched-chain amino acids (valine), aromatic amino acid (phenylalanine), bile acid (cholic acid, lithocholic acid, and β-muricholic acid), short-chain fatty acid (isobutyric acid), and phospholipid [lysoPE(17:0), lysoPE(20:3) and lysoPS(16:0)] were associated to the T2DM remission after SADI-S. Conclusion
SADI-S improves T2DM in rats by regulating phenylalanine biosynthesis, valine, phenylalanine, alanine, glutamate, proline, bile acid, and phospholipid metabolism pathways.
SUBMITTER:
PROVIDER: S-EPMC9530139 | biostudies-literature | 2022 Jan
REPOSITORIES: biostudies-literature