Unknown

Dataset Information

0

Vitamin C epigenetically controls osteogenesis and bone mineralization.


ABSTRACT: Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoters, enhancers and super-enhancers near bone-specific genes. This epigenetic circuit licenses osteoblastogenesis by permitting the expression of all major pro-osteogenic genes. Osteogenic cell differentiation is strictly and continuously dependent on Vitamin C, whereas Vitamin C is dispensable for adipogenesis. Importantly, deletion of 5hmC-writers, Tet1 and Tet2, in Vitamin C-sufficient murine bone causes severe skeletal defects which mimic bone phenotypes of Vitamin C-insufficient Gulo knockout mice, a model of Vitamin C deficiency and scurvy. Thus, Vitamin C's epigenetic functions are central to osteoblastogenesis and bone formation and may be leveraged to prevent common bone-degenerating conditions.

SUBMITTER: Thaler R 

PROVIDER: S-EPMC9537512 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoter  ...[more]

Similar Datasets

| S-EPMC5010570 | biostudies-literature
| S-EPMC5150650 | biostudies-literature
| S-EPMC4358264 | biostudies-literature
| S-EPMC8359849 | biostudies-literature
| S-EPMC10253769 | biostudies-literature
2022-06-10 | GSE138854 | GEO
| S-EPMC6350529 | biostudies-literature
| S-EPMC9081581 | biostudies-literature
| S-EPMC11568344 | biostudies-literature
| S-EPMC10636228 | biostudies-literature