Project description:Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Project description:ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Project description:Purpose of reviewTo review the recent developments in our understanding of endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) function in relation to its role in major histocompatibility complex (MHC) class I peptide presentation and human leukocyte antigen (HLA) class I-associated diseases.Recent findingsERAP1 polymorphisms exhibiting loss-of-function have been associated with protection from AS. The aminopeptidase function of ERAP1 optimizes peptides for binding and presentation by MHC class I. Most of the studies have revealed reduced MHC class I expression in situations of reduced ERAP1 function. Under these circumstances, the presented peptides are often N-terminally extended, and cell surface complexes are unstable and fall apart more readily. In contrast, peptides presented by HLA-B*27 : 05 when ERAP1 is silenced are frequently extended on the C-terminus. Recent work has emphasized on the importance of assessing the function of allotypes encoded by ERAP1 haplotypes, rather than effects of single amino acid substitutions. The allotypes found in a series of AS patients were poorer at restoring HLA-B27 expression than allotypes found in unaffected controls, which may seem contrary to the genetic data linking loss-of-function to protection.SummaryMore work is needed to understand how ERAP1 variants associated with risk and protection influence the quality and quantity of peptides available for binding to HLA class I molecules in the ER. Moreover, we need to determine allele-specific effects of ERAP1 variants in the context of HLA-B*51 and HLA-Cw*6, which are associated with Behçet's disease and psoriasis, respectively.
Project description:Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.
Project description:Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Project description:We employed virtual screening followed by in vitro evaluation to discover novel inhibitors of ER aminopeptidase 1, an important enzyme for the human adaptive immune response that has emerged as an attractive target for cancer immunotherapy and the control of autoimmunity. Screening hits included three structurally related compounds carrying the (E)-N'-((1H-indol-3-yl)methylene)-1H-pyrazole-5-carbohydrazide scaffold and (2-carboxylatophenyl)sulfanyl-ethylmercury as novel ERAP1 inhibitors. The latter, also known as thimerosal, a common component in vaccines, was found to inhibit ERAP1 in the submicromolar range and to present strong selectivity versus the homologous aminopeptidases ERAP2 and IRAP. Cell-based analysis indicated that thimerosal can effectively reduce ERAP1-dependent cross-presentation by dendritic cells in a dose-dependent manner.
Project description:To be, or not to be, that is the question. (William Shakespeare, Hamlet) Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2, respectively) play a role in trimming peptides that are too long to be bound and presented by class I HLA (HLA-I) molecules to CD8+ T cells. They may also affect the HLA-I-presented peptide repertoire by overtrimming potential epitopes. Both enzymes may also be released from the cell to cleave cytokine receptors and regulate blood pressure. Both enzymes are polymorphic, which affects their expression, specificity, and activity, resulting in their role in diseases associated with HLA-I. In this brief review, we concentrate on ERAP2, less investigated because of its lack in laboratory mice and 25% of humans, as well as a lower polymorphism. ERAP2 was found to be associated with several diseases and to influence ERAP1 effects. It was discovered recently that the defective ERAP2 gene, not encoding functional aminopeptidase, may nevertheless, during viral infections, produce a truncated protein isoform of unknown function, possibly interfering with ERAP1 and full-length ERAP2 by heterodimer formation. The disease associations of ERAP2, alone or in combination with ERAP1, are reviewed.
Project description:Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function. We observed higher frequencies of terminally matured NK cells, as well as higher frequencies of licensed NK cells (expressing the Ly49C and Ly49I receptors) in ERAP1-KO mice, results that positively correlated with an enhanced NK activation and IFNγ production by ERAP1-KO mice challenged with pro-inflammatory stimuli. Furthermore, during pathogen recognition, ERAP1 regulates IL12 production by CD11c(+) DCs specifically, with increases in IL12 production positively correlated with an increased phagocytic activity of splenic DCs and macrophages. Collectively, our results demonstrate a previously unrecognized, more central role for the ERAP1 protein in modulating several aspects of both the development of the innate immune system, and its responses during the initial stages of pathogen recognition. Such a role may explain why ERAP1 has been implicated by GWAS in the pathogenesis of autoimmune diseases that may be precipitated by aberrant responses to pathogen encounters.
Project description:Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an essential component of the immune system, because it trims peptide precursors and generates the N--restricted epitopes. To examine ERAP1's unique properties of length- and sequence-dependent processing of antigen precursors, we report a 2.3 Å resolution complex structure of the ERAP1 regulatory domain. Our study reveals a binding conformation of ERAP1 to the carboxyl terminus of a peptide, and thus provides direct evidence for the molecular ruler mechanism.
Project description:According to the results of the first genome-wide association study of ankylosing spondylitis (AS), endoplasmic reticulum aminopeptidase 1 (ERAP1) may serve an important role. However, a number of case-control studies have not been able to replicate this result using the same genetic markers. In the present study, the role of common genetic variants of ERAP1 in AS was investigated using two-stage bioinformatics analysis. In the first stage, a classical meta-analysis was performed to assess AS susceptibility markers in ERAP1 using data from available published case-control association studies. The summary odds ratios for 10 single nucleotide polymorphisms (SNPs) were observed to be statistically significant in different studies. In the second stage, the functional effects of these genetic ERAP1 variants were investigated using prediction tools and structural analyses. The K528R (rs30187) substitution SNP in ERAP1 was termed as likely damaging by PolyPhen-2 software, was observed to be located close to the entrance of the substrate pocket, and was predicted to contribute to reduced ERAP1 aminopeptidase activity. In addition, the R725Q (rs17482078) SNP, which was an additional potentially damaging substitution, was suggested to decrease the enzymatic activity of ERAP1, as this substitution may lead to the loss of two hydrogen bonds between R725 and D766 and affect the stability of the C-terminus of ERAP1. In conclusion, the results of the two-stage bioinformatics analysis supported the hypothesis that ERAP1 may present an important susceptibility gene for AS. In addition, the results revealed that two functional SNPs (rs30187 and rs17482078) demonstrated the potential to decrease the enzymatic activity of ERAP1 by affecting its protein structure. Further protein structure-guided studies of the specificity and activity of these ERAP1 variants are therefore warranted.