Project description:In this study, a rapid method for the detection of Central and West Africa clades of Monkeypox virus (MPXV) using recombinase polymerase amplification (RPA) assay targeting the G2R gene was developed. MPXV, an Orthopoxvirus, is a zoonotic dsDNA virus, which is listed as a biothreat agent. RPA was operated at a single constant temperature of 42°C and produced results within 3 to 10 minutes. The MPXV-RPA-assay was highly sensitive with a limit of detection of 16 DNA molecules/μl. The clinical performance of the MPXV-RPA-assay was tested using 47 sera and whole blood samples from humans collected during the recent MPXV outbreak in Nigeria as well as 48 plasma samples from monkeys some of which were experimentally infected with MPXV. The specificity of the MPXV-RPA-assay was 100% (50/50), while the sensitivity was 95% (43/45). This new MPXV-RPA-assay is fast and can be easily utilised at low resource settings using a solar powered mobile suitcase laboratory.
Project description:The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.
Project description:Beginning in May 2022, a rising number of monkeypox cases were reported in non-monkeypox-endemic countries in the Northern Hemisphere. We adapted 2 published quantitative PCRs for use as a dual-target monkeypox virus test on widely used automated high-throughput PCR systems. We determined analytic performance by serial dilutions of monkeypox virus reference material, which we quantified by digital PCR. We found the lower limit of detection for the combined assays was 4.795 (95% CI 3.6-8.6) copies/mL. We compared clinical performance against a commercial manual orthopoxvirus research use only PCR kit by using clinical remnant swab samples. Our assay showed 100% positive (n = 11) and 100% negative (n = 56) agreement. Timely and scalable PCR tests are crucial for limiting further spread of monkeypox. The assay we provide streamlines high-throughput molecular testing for monkeypox virus on existing broadly established platforms used for SARS-CoV-2 diagnostic testing.
Project description:BackgroundMonkeypox (MPX), caused by the Monkeypox virus (MPXV), has incurred global attention since it broke out in many countries in recent times, which highlights the need for rapid and reliable diagnosis of MPXV infection.MethodsWe combined recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based detection to devise a diagnostic test for detection of MPXV and differentiation of its two clades [Central Africa clade (MPXV-CA) and West Africa clade (MPXV-WA)], and called it MPXV-RCC. The sensitivity, specificity and practicability of this method have been analyzed.ResultsThe optimal conditions of MPXV-RCC assay include two RPA reactions at 38°C for 25 min and a CRISPR/Cas12a-gRNA detection at 37°C for 10 min. The results of MPXV-RCC assay were indicated by a real-time fluorescence analysis software. Thus, the whole detection process, including rapid template preparation (20 min), RPA reaction (25 min) and CRISPR-based detection (10 min), could be finished within 1 hour. The sensitivity of MPXV-RCC for MPXV-CA and MPXV-WA detection was down to 5~10 copies of recombination plasmids and pseudovirus per reaction. Particularly, MPXV-RCC assay could clearly differentiate MPXV-CA from MPXV-WA, and had no cross-reactivity with other pathogens. In addition, the feasibility of MPXV-RCC assay was further validated by using spiked clinical samples.ConclusionThe MPXV-RCC assay developed here is a promising tool for quick and reliable diagnosis of MPXV infection.
Project description:Simple, sensitive, and accurate molecular diagnostics are critical for preventing rapid spread of infection and initiating early treatment of diseases. However, current molecular detection methods typically rely on extensive nucleic acid sample preparation and expensive instrumentation. Here, a simple, fully integrated, lab-in-a-magnetofluidic tube (LIAMT) platform is presented for "sample-to-result" molecular detection of virus. By leveraging magnetofluidic transport of micro/nano magnetic beads, the LIAMT device integrates viral lysis, nucleic acid extraction, isothermal amplification, and CRISPR detection within a single engineered microcentrifuge tube. To enable point-of-care molecular diagnostics, a palm-sized processor is developed for magnetofluidic separation, nucleic acid amplification, and visual fluorescence detection. The LIAMT platform is applied to detect SARS-CoV-2 and HIV viruses, achieving a detection sensitivity of 73.4 and 63.9 copies µL-1, respectively. Its clinical utility is further demonstrated by detecting SARS-CoV-2 and HIV in clinical samples. This simple, affordable, and portable LIAMT platform holds promise for rapid and sensitive molecular diagnostics of infectious diseases at the point-of-care.
Project description:Monkeypox virus (MPXV) is a human pathogenic virus that belongs to the genus Orthopoxvirus. In 2022, MPXV caused an unprecedented number of infections in many countries. As it is difficult to distinguish MPXV from other pathogens by its symptoms in the early stage of infection, a rapid and reliable assay for MPXV detection is needed. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay for the specific detection of MPXV and evaluated its application in simulated clinical samples. The A27L-1 and F3L-1 primer sets were identified as the optimal primers, and 63°C was the most appropriate reaction temperature for sequence amplification. The detection limits of the LAMP assay using primer sets A27L-1 and F3L-1 were both 20 copies/reaction mixture, which were >100-fold higher in terms of sensitivity, compared with conventional PCR. The LAMP assay findings were negative for all 21 non-MPXV pathogens, confirming the high specificity of our assay. All three types of simulated clinical samples were clearly identified by our LAMP assay, and the detection limits were consistent with the sensitivity results, indicating efficient clinical sample identification. Our rapid and reliable MPXV LAMP assay could be useful for MPXV detection and on-site diagnosis, especially in primary hospitals and rural areas. IMPORTANCE MPXV outbreaks rapidly grew in the first half of 2022, and this virus has been recognized as an increasing public health threat, particularly in the context of the COVID-19 pandemic. Thus, developing reliable and fast detection methods for MPXV is necessary.
Project description:The ongoing outbreak of the monkeypox, caused by monkeypox virus (MPXV), has been a public health emergency of international concern, indicating an urgent need for rapid and sensitive MPXV detection. Here, we designed a diagnostic test based on loop-mediated isothermal amplification (LAMP) and nanoparticle-based lateral flow biosensor(LFB)for diagnosis of MPXV infection, termed MPX-LAMP-LFB. A set of six LAMP primers was designed based the ATI gene of MPXV, and LAMP amplification of MPXV templates was performed at 63°C for only 40 min. The results were rapidly and visually decided using the LFB test within 2 min. The MPX-LAMP-LFB assay can specifically detect MPXV strains without cross-reaction with non-MPXV pathogens. The sensitivity of the MPX-LAMP-LFB assay is as low as 5 copies/μl of plasmid template and 12.5 copies/μl of pseudovirus in human blood samples. The whole process of the MPX-LAMP-LFB assay could be completed ~1 h, including rapid template preparation (15 min), LAMP reaction (40 min)and result reporting (<2 min). Collectively, MPX-LAMP-LFB assay developed here is a useful tool for rapid and reliable diagnosis of MPXV infection.
Project description:The ongoing epidemic of mpox, namely human monkeypox virus (MPXV) infection, requires rapid and reliable laboratory diagnosis. We report on the QIAstat-Dx viral vesicular panel PCR assay that allows the detection of (within 75 min) six vesicular disease-causing viruses, including MPXV. We analyzed 168 clinical samples, known to be positive (51 samples) or negative (117 samples) for MPXV clade II, obtained from patients at their mpox diagnosis or follow-up. QIAstat assay results were compared to those of a MPXV-specific reference PCR assay. The QIAstat assay detected MPXV (clade II) in 51 (100%) of 51 samples and did not detect MPXV in 117 (100%) of 117 samples, resulting in a positive or negative agreement of 100% (95% CI, 93.0-100) and 100% (95% CI, 96.8-100), respectively. Of the 20 patients diagnosed with mpox, 18 (90.0%) had at least a vesicular swab and 1 (5.0%) had only an oropharyngeal swab positive for MPXV. At mpox follow-ups, 2 (10.0%) of 20 patients had first-time positive whole blood samples. Thirteen MPXV-negative samples were positive for mpox-mimicking viruses. Our findings show the excellent performance of the QIAstat-Dx assay for MPXV detection in clinical samples. Further studies are needed before considering a large-scale application of the QIAstat-Dx assay.