Unknown

Dataset Information

0

MiR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity.


ABSTRACT: Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse-specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine-apparatus protein synaptopodin under the regulation of miR-124. Using genetic manipulations to alter synaptopodin expression or regulation by miR-124, we show that synaptopodin behaves as a "postsynaptic tag" whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input-specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.

SUBMITTER: Dubes S 

PROVIDER: S-EPMC9574720 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity.

Dubes Sandra S   Soula Anaïs A   Benquet Sébastien S   Tessier Béatrice B   Poujol Christel C   Favereaux Alexandre A   Thoumine Olivier O   Letellier Mathieu M  

The EMBO journal 20220725 20


Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse-specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to a  ...[more]

Similar Datasets

| S-SCDT-EMBOJ-2021-109012 | biostudies-other
| S-EPMC3657766 | biostudies-literature
| S-EPMC10814840 | biostudies-literature
2022-10-28 | GSE216509 | GEO
| S-EPMC6117472 | biostudies-literature
| S-EPMC8639147 | biostudies-literature
| S-EPMC4020085 | biostudies-literature
| S-EPMC11827636 | biostudies-literature
| S-EPMC11419068 | biostudies-literature
| S-EPMC3545206 | biostudies-literature