Project description:The last two decades have seen significant advancement in our understanding of colorectal tumors with DNA mismatch repair (MMR) deficiency. The ever-emerging revelations of new molecular and genetic alterations in various clinical conditions have necessitated constant refinement of disease terminology and classification. Thus, a case with the clinical condition of hereditary non-polyposis colorectal cancer as defined by the Amsterdam criteria may be one of Lynch syndrome characterized by a germline defect in one of the several MMR genes, one of the yet-to-be-defined "Lynch-like syndrome" if there is evidence of MMR deficiency in the tumor but no detectable germline MMR defect or tumor MLH1 promoter methylation, or "familial colorectal cancer type X" if there is no evidence of MMR deficiency. The detection of these conditions carries significant clinical implications. The detection tools and strategies are constantly evolving. The Bethesda guidelines symbolize a selective approach that uses clinical information and tumor histology as the basis to select high-risk individuals. Such a selective approach has subsequently been found to have limited sensitivity, and is thus gradually giving way to the alternative universal approach that tests all newly diagnosed colorectal cancers. Notably, the universal approach also has its own limitations; its cost-effectiveness in real practice, in particular, remains to be determined. Meanwhile, technological advances such as the next-generation sequencing are offering the promise of direct genetic testing for MMR deficiency at an affordable cost probably in the near future. This article reviews the up-to-date molecular definitions of the various conditions related to MMR deficiency, and discusses the tools and strategies that have been used in detecting these conditions. Special emphasis will be placed on the evolving nature and the clinical importance of the disease definitions and the detection strategies.
Project description:PurposeEvaluate response of mismatch repair-deficient (dMMR) rectal cancer to neoadjuvant chemotherapy.Experimental designdMMR rectal tumors at Memorial Sloan Kettering Cancer Center (New York, NY) were retrospectively reviewed for characteristics, treatment, and outcomes. Fifty patients with dMMR rectal cancer were identified by IHC and/or microsatellite instability analysis, with initial treatment response compared with a matched MMR-proficient (pMMR) rectal cancer cohort. Germline and somatic mutation analyses were evaluated. Patient-derived dMMR rectal tumoroids were assessed for chemotherapy sensitivity.ResultsOf 21 patients receiving neoadjuvant chemotherapy (fluorouracil/oxaliplatin), six (29%) had progression of disease. In comparison, no progression was noted in 63 pMMR rectal tumors (P = 0.0001). Rectal cancer dMMR tumoroids reflected this resistance to chemotherapy. No genomic predictors of chemotherapy response were identified. Of 16 patients receiving chemoradiation, 13 (93%) experienced tumor downstaging; one patient had stable disease, comparable with 48 pMMR rectal cancers. Of 13 patients undergoing surgery, 12 (92%) had early-stage disease. Forty-two (84%) of the 50 patients tested positive for Lynch syndrome with enrichment of germline MSH2 and MSH6 mutations when compared with 193 patients with Lynch syndrome-associated colon cancer (MSH2, 57% vs 36%; MSH6, 17% vs 9%; P < 0.003).ConclusionsOver one-fourth of dMMR rectal tumors treated with neoadjuvant chemotherapy exhibited disease progression. Conversely, dMMR rectal tumors were sensitive to chemoradiation. MMR status should be performed upfront in all locally advanced rectal tumors with careful monitoring for response on neoadjuvant chemotherapy and genetic testing for Lynch syndrome in patients with dMMR rectal cancer.
Project description:BackgroundNeoadjuvant chemotherapy and radiation followed by surgical resection of the rectum is a standard treatment for locally advanced rectal cancer. A subset of rectal cancer is caused by a deficiency in mismatch repair. Because mismatch repair-deficient colorectal cancer is responsive to programmed death 1 (PD-1) blockade in the context of metastatic disease, it was hypothesized that checkpoint blockade could be effective in patients with mismatch repair-deficient, locally advanced rectal cancer.MethodsWe initiated a prospective phase 2 study in which single-agent dostarlimab, an anti-PD-1 monoclonal antibody, was administered every 3 weeks for 6 months in patients with mismatch repair-deficient stage II or III rectal adenocarcinoma. This treatment was to be followed by standard chemoradiotherapy and surgery. Patients who had a clinical complete response after completion of dostarlimab therapy would proceed without chemoradiotherapy and surgery. The primary end points are sustained clinical complete response 12 months after completion of dostarlimab therapy or pathological complete response after completion of dostarlimab therapy with or without chemoradiotherapy and overall response to neoadjuvant dostarlimab therapy with or without chemoradiotherapy.ResultsA total of 12 patients have completed treatment with dostarlimab and have undergone at least 6 months of follow-up. All 12 patients (100%; 95% confidence interval, 74 to 100) had a clinical complete response, with no evidence of tumor on magnetic resonance imaging, 18F-fluorodeoxyglucose-positron-emission tomography, endoscopic evaluation, digital rectal examination, or biopsy. At the time of this report, no patients had received chemoradiotherapy or undergone surgery, and no cases of progression or recurrence had been reported during follow-up (range, 6 to 25 months). No adverse events of grade 3 or higher have been reported.ConclusionsMismatch repair-deficient, locally advanced rectal cancer was highly sensitive to single-agent PD-1 blockade. Longer follow-up is needed to assess the duration of response. (Funded by the Simon and Eve Colin Foundation and others; ClinicalTrials.gov number, NCT04165772.).
Project description:The inclusion of DNA mismatch repair (MMR) evaluation as a standard of care for endometrial cancer management will result in a growing population of patients with MMR deficiency and negative germline Lynch syndrome testing (MMR-deficient). In this systematic review and study, the clinicopathologic features of endometrial cancer in patients with MMR-intact, MLH1 methylation positive, MMR-deficient or Lynch syndrome are evaluated. A systematic search of online databases between 1990 and 2018 identified studies of endometrial cancer patients with tumour testing (MMR protein immunohistochemistry or microsatellite instability) and germline assessment for Lynch syndrome. Extracted data included tumour testing, germline genetic testing, age, body mass index (BMI), family history, tumour stage, grade and histologic type. Associations between MMR-intact, MLH1 methylation positive, MMR-deficient and Lynch syndrome groups were analysed using descriptive statistics. The comprehensive search produced 4,400 publications, 29 met inclusion criteria. A total of 7,057 endometrial cancer cases were identified, 1,612 with abnormal immunohistochemistry, 977 with microsatellite instability. Nine-hundred patients underwent germline genetic testing, identifying 212 patients with Lynch syndrome. Patients in the Lynch syndrome and MMR-deficient groups were significantly younger than patients in the MMR-intact and MLH1 methylation positive groups. Patients with MMR-intact tumours had the highest BMI, followed by MMR-deficient, then Lynch syndrome. MMR-intact tumours were more likely to be grade I at diagnosis than other groups. Patients with Lynch syndrome and MMR-deficient tumours were less likely to have stage I disease as compared to patients with MMR-intact tumours. Endometrial cancer patients with MMR-deficient tumours have similar features to those with germline Lynch syndrome mutations, including age, grade, histology and stage. Even in the absence of a germline mutation, tumour evaluation for MMR status may have important clinical implications.
Project description:BackgroundDNA mismatch repair (MMR) deficiency is a major pathway of genomic instability in cancer. It leads to the accumulation of numerous mutations predominantly at microsatellite sequences, a phenotype known as microsatellite instability (MSI). MSI tumors have a distinct clinical behavior and commonly respond well to immune checkpoint blockade, irrespective of their origin. Data about the prevalence of MSI among gallbladder cancer (GBC) have been conflicting. We here analyzed a well-characterized cohort of 69 Western-world GBCs.MethodsWe analyzed the mononucleotide MSI marker panel consisting of BAT25, BAT26, and CAT25 to determine the prevalence of MMR deficiency-induced MSI.ResultsMSI was detected in 1/69 (1.4%) of analyzed GBCs. The detected MSI GBC had a classical histomorphology, i.e. of acinar/tubular/glandular pancreatobiliary phenotype, and showed nuclear expression of all four MMR proteins MLH1, MSH2, MSH6, and PMS2. The MSI GBC patient showed a prolonged overall survival, despite having a high tumor stage at diagnosis. The patient had no known background or family history indicative of Lynch syndrome.ConclusionsEven though the overall number of MSI tumors is low in GBC, the potentially therapeutic benefit of checkpoint blockade in the respective patients may justify MSI analysis of GBC.
Project description:To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.
Project description:Somatic hypermutation in cancer has gained momentum with the increased use of tumour mutation burden as a biomarker for immune checkpoint inhibitors. Spontaneous deamination of 5-methylcytosines to thymines at CpG dinucleotides is one of the most ubiquitous endogenous mutational processes in normal and cancer cells. Here, we performed a systematic investigation of somatic CpG hypermutations at a pan-cancer level. We studied 30,191 cancer patients and 103 cancer types and developed an algorithm to classify somatic CpG hypermutation. Across cancer types, we observed the highest prevalence in paediatric leukaemia (3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer (1%). We discovered germline and somatic mutations in the mismatch repair complex MutSα (MSH2-MSH6) as genetic drivers of somatic CpG hypermutation, which frequently converged on CpG sites and driver mutations in TP53. We further observe an association between somatic CpG hypermutation and response to immune checkpoint inhibitors. Overall, our study identified novel cancer types that display somatic CpG hypermutation, strong association with MutSα-deficiency, and potential utility in cancer immunotherapy.
Project description:BackgroundMetastatic colon cancer (MCC) is a debilitating condition with a poor prognosis. Currently, there is limited data that investigates MCC in relation to mismatch repair (MMR) status. The aims of this study are to compare sociodemographic and clinicopathologic features and mortality between patients with MMR-proficient (MMR-P) and MMR-deficient (MMR-D) MCC.MethodsWe performed an 8-year retrospective review of the National Cancer Database (NCDB) to identify patients age ≥18 years with MCC and reported MMR status. Data collection included sociodemographic characteristics, primary tumor sites and histopathologic features, and treatment modalities. Outcomes included 90-day, 180-day, 1-year, and 2-year overall mortality. Bivariate logistic regression and multivariate Cox regression identified differences between MMR-P and MMR-D and identified predictors of mortality, respectively.ResultsA total of 10,922 MCC cases were identified; 8,796 (80.53%) were MMR-P and 2,126 (19.47%) were MMR-D. MMR-D was independently associated with older age at diagnosis, female sex, mucinous adenocarcinoma, medullary carcinoma, and lymph-vascular invasion. MMR-P was independently associated with perineural invasion and left-sided colonic primary tumor predominance. When adjusted for demographics, histology, and treatment modalities, MMR-D was associated with mortality at 180 days, 1 year, and 2 years.ConclusionsOur study identified several key sociodemographic and clinicopathologic features of MMR-D MCC. MMR-D appears to confer increased overall mortality at 180 days, 1 year, and 2 years after diagnosis in MCC.
Project description:Somatic hypermutation in cancer has gained momentum with the increased use of tumour mutation burden as a biomarker for immune checkpoint inhibitors. Spontaneous deamination of 5-methylcytosine to thymine at CpG dinucleotides is one of the most ubiquitous endogenous mutational processes in normal and cancer cells. Here, we performed a systematic investigation of somatic CpG hypermutation at a pan-cancer level. We studied 30,191 cancer patients and 103 cancer types and developed an algorithm to identify somatic CpG hypermutation. Across cancer types, we observed the highest prevalence in paediatric leukaemia (3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer (1%). We discovered germline variants and somatic mutations in the mismatch repair complex MutSα (MSH2-MSH6) as genetic drivers of somatic CpG hypermutation in cancer, which frequently converged on CpG sites and TP53 driver mutations. We further observe an association between somatic CpG hypermutation and response to immune checkpoint inhibitors. Overall, our study identified novel cancer types that display somatic CpG hypermutation, strong association with MutSα-deficiency, and potential utility in cancer immunotherapy.
Project description:Colorectal cancer patients respond inconsistently to immunotherapies, likely due to the immune microenvironments around their tumors. We analyzed the relationship between deficient mismatch repair (dMMR) and the colorectal cancer immune microenvironment to identify predictors of effective immunotherapy. Colorectal cancer patients (n=113) who had undergone surgical resection were divided into dMMR and proficient mismatch repair (pMMR) groups. The levels of immune checkpoint proteins, including programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3 dioxygenase and CD8 were assessed immunohistochemically. The percentage of tumor-infiltrating lymphocytes strongly positive for PD-1 (score=3) was higher in the dMMR than pMMR group (79.3% vs. 41.7%; p=0.003). The groups showed similar tumor cell PD-L1 positivity rates (34.5% vs. 35.7%, p=0.905) and PD-L1 intensity levels on immune cell infiltrates (86.2% vs. 84.5%, p=0.964). However, when a cut-off value of 80% was used for PD-L1 positivity, the rate of PD-L1 positivity on immune cell infiltrates differed between the groups (51.7% vs. 22.6%, p=0.003). The rate of high indoleamine 2,3 dioxygenase expression was greater in the dMMR than pMMR group (55.2% vs. 36.9%, p=0.026). CD8+ T cells were elevated in the dMMR group in both compartments (p=0.017 for tumor-infiltrating lymphocytes and stroma; p=0.038 for invasive front). Thus the immune microenvironment of dMMR colorectal cancer differs from that of pMMR colorectal cancer.