Unknown

Dataset Information

0

Proteogenomics refines the molecular classification of chronic lymphocytic leukemia.


ABSTRACT: Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.

SUBMITTER: Herbst SA 

PROVIDER: S-EPMC9584885 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteogenomics refines the molecular classification of chronic lymphocytic leukemia.

Herbst Sophie A SA   Vesterlund Mattias M   Helmboldt Alexander J AJ   Jafari Rozbeh R   Siavelis Ioannis I   Stahl Matthias M   Schitter Eva C EC   Liebers Nora N   Brinkmann Berit J BJ   Czernilofsky Felix F   Roider Tobias T   Bruch Peter-Martin PM   Iskar Murat M   Kittai Adam A   Huang Ying Y   Lu Junyan J   Richter Sarah S   Mermelekas Georgios G   Umer Husen Muhammad HM   Knoll Mareike M   Kolb Carolin C   Lenze Angela A   Cao Xiaofang X   Österholm Cecilia C   Wahnschaffe Linus L   Herling Carmen C   Scheinost Sebastian S   Ganzinger Matthias M   Mansouri Larry L   Kriegsmann Katharina K   Kriegsmann Mark M   Anders Simon S   Zapatka Marc M   Del Poeta Giovanni G   Zucchetto Antonella A   Bomben Riccardo R   Gattei Valter V   Dreger Peter P   Woyach Jennifer J   Herling Marco M   Müller-Tidow Carsten C   Rosenquist Richard R   Stilgenbauer Stephan S   Zenz Thorsten T   Huber Wolfgang W   Tausch Eugen E   Lehtiö Janne J   Dietrich Sascha S  

Nature communications 20221020 1


Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery coh  ...[more]

Similar Datasets

| EGAS00001005746 | EGA
| S-EPMC4457530 | biostudies-literature
| S-EPMC8875960 | biostudies-literature
2015-04-30 | GSE66425 | GEO
| S-EPMC8926167 | biostudies-literature
| S-EPMC8793417 | biostudies-literature
| S-EPMC11879880 | biostudies-literature
| S-EPMC4831394 | biostudies-other
| S-EPMC3392073 | biostudies-literature
| S-EPMC6967408 | biostudies-literature