Project description:Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Project description:This SuperSeries is composed of the following subset Series: GSE39642: NanoString nCounter immune-related gene expression in blood sorted CD14+CD16- monocytes from sALS, fALS and HC subjects GSE39643: NanoString miRNA profiling of peripheral blood sorted CD14+CD16- monocytes from amyotrophic lateral sclerosis, multiple sclerosis and healthy control subjects Refer to individual Series
Project description:Identification of amyotrophic lateral sclerosis (ALS) associated genes. Post mortem spinal cord grey matter from sporadic and familial ALS patients compared with controls. Keywords: other
Project description:ObjectiveTo evaluate the CSF levels of chitinase proteins during the presymptomatic and early symptomatic phases of amyotrophic lateral sclerosis (ALS).MethodsCSF samples were obtained from 16 controls, 55 individuals at-risk for ALS (including 18 carrying a mutation in C9ORF72, 33 in SOD1), 12 ALS patients, and 7 phenoconverters (individuals diagnosed with ALS during follow-up). At-risk individuals and phenoconverters were enrolled through the Pre-fALS study, which includes individuals carrying an ALS-associated gene mutation without disease manifestations at initial assessment. Longitudinal CSF collections, where possible, took place every 3-12 months for ALS patients and every 1-2 years for others. CSF levels of chitotriosidase 1 (CHIT1), chitinase-3-like protein 1 (CHI3L1, YKL-40) and chitinase-3-like protein 2 (CHI3L2, YKL-39) were measured by ELISA, along with CHIT1 activity. Longitudinal changes in at-risk individuals and phenoconverters were fitted to linear mixed effects models.ResultsSlowly rising levels of CHIT1 were observed over time in the at-risk individuals (slope 0.059 log10 [CHIT1] per year, P < 0.001). Among phenoconverters, CHIT1 levels and activity rose more sharply (0.403 log10 [CHIT1] per year, P = 0.005; 0.260 log10 [CHIT1 activity] per year, P = 0.007). Individual levels of both CHI3L1 and CHI3L2 remained relatively stable over time in all participant groups.InterpretationThe CHIT1 neuroinflammatory response is a feature of the late presymptomatic to early symptomatic phases of ALS. This study does not suggest a long prodrome of upregulated glial activity in ALS pathogenesis, but strengthens the place of CHIT1 as part of a panel of biomarkers to objectively assess the impact of immune-modulatory therapeutic interventions in ALS.
Project description:Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Project description:ObjectiveMutations in the progranulin (PGRN) gene were recently described as the cause of ubiquitin positive frontotemporal dementia (FTD). Clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and FTD prompted us to screen PGRN in patients with ALS and ALS-FTD.MethodsThe PGRN gene was sequenced in 272 cases of sporadic ALS, 40 cases of familial ALS and in 49 patients with ALS-FTD.ResultsMissense changes were identified in an ALS-FTD patient (p.S120Y) and in a single case of limb onset sporadic ALS (p.T182M), although the pathogenicity of these variants remains unclear.ConclusionPGRN mutations are not a common cause of ALS phenotypes.
Project description:Amyotrophic Lateral Sclerosis (ALS) is a prototypical neurodegenerative disease characterized by progressive degeneration of motor neurons both in the brain and spinal cord. The constantly evolving nature of ALS represents a fundamental dimension of individual differences that underlie this disorder, yet it involves multiple levels of functional entities that alternate in different directions and finally converge functionally to define ALS disease progression. ALS may start from a single entity and gradually becomes multifactorial. However, the functional convergence of these diverse entities in eventually defining ALS progression is poorly understood. Various hypotheses have been proposed without any consensus between the for-and-against schools of thought. The present review aims to capture explanatory hierarchy both in terms of hypotheses and mechanisms to provide better insights on how they functionally connect. We can then integrate them within a common functional frame of reference for a better understanding of ALS and defining future treatments and possible therapeutic strategies. Here, we provide a philosophical understanding of how early leads are crucial to understanding the endpoints in ALS, because invariably, all early symptomatic leads are underpinned by neurodegeneration at the cellular, molecular and genomic levels. Consolidation of these ideas could be applied to other neurodegenerative diseases (NDs) and guide further critical thinking to unveil their roadmap of destination ALS.
Project description:The clinical diagnosis of amyotrophic lateral sclerosis (ALS) relies on determination of progressive dysfunction of both cortical as well as spinal and bulbar motor neurons. However, the variable mix of upper and lower motor neuron signs result in the clinical heterogeneity of patients with ALS, resulting frequently in delay of diagnosis as well as difficulty in monitoring disease progression and treatment outcomes particularly in a clinical trial setting. As such, the present review provides an overview of recently developed novel non-invasive electrophysiological techniques that may serve as biomarkers to assess UMN and LMN dysfunction in ALS patients.
Project description:Identification of familial amyotrophic lateral sclerosis (fALS) related genes. Material from three hSOD1(G93A) transgenic mice was compared to material from three non-transgenic control mice using an alternating loop design on two-colour cDNA microarrays. Statistical data management and analysis: postgreSQL relational database (www.postgresql.org), Perl, and R (www.r-project.org); pin-wise lowess-regression based normalisation (Yang et al., 2002 [PMID: 11842121]); mixed ANOVA-model. Keywords = amyotrophic lateral sclerosis, ALS, SOD1 mouse model