Project description:After the successful preparation of empirical double network hydrogel beads from graphene oxide/sodium alginate(GO/SA), its cationic metal adsorption performance in aqueous solutions were investigated. Taking Mn(II) as an example, the contribution of several factors including pH, bead dosage, temperature, contact time and initial concentration ions to adsorption efficiency were examined. The Transmission Electron Microscopy (TEM) results indicate that the GO/SA double (GAD) network hydrogel bead strongly interpenetrate and the adsorption of Mn(II) is mainly influenced by solution pH, bead dose and temperature. The GAD beads exhibit an excellent adsorption capacity of 56.49 mg g-1. The adsorption process fit both Pseudo-second order kinetic model (R2 > 0.97) and the Freundlich adsorption isotherm (R2 > 0.99) and is spontaneous. After seven rounds of adsorption-desorption cycle, the adsorption capacity of GAD hydrogel remained unchanged at 18.11 mg/g.
Project description:The osmotic heat engine represents a new and promising technology for the harvesting of low-grade waste heat from various sources. However, the lack of an adequate semipermeable membrane hinders the technology's advancement. In this study, we investigated the application of a freestanding graphene oxide membrane (GOM) for energy generation in an osmotic heat engine. The synthesized GOM has a water permeability coefficient of 4.4 L m-2 h-1 bar-1 (LMH-bar). The internal concentration polarization in the osmosis filtration system can be minimized because no membrane support layer is needed for the freestanding GOM. As a result, high water flux and high power density are obtained. For example, under an applied hydraulic pressure of 6.90 bar, with a 2 M draw solution of ammonium bicarbonate solution, a power density of 20.0 W/m2 is achieved. This study shows that the freestanding GOM is promising for application in the osmotic heat engine. Future research regarding improving the mechanical properties and water stability of the GOM is beneficial for further advancing the technology.
Project description:Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation. Furthermore, the synergic effect of GO with other divalent cations with intrinsic antibacterial and cytotoxic activity such as Zn2+ has not been explored yet. Thus, here, two commercially available sodium alginates were characterised and utilized in the synthesis of zinc alginate films with GO following the same chemical route reported for the calcium alginate/GO composites. The results of this study showed that zinc release, water sorption/diffusion and wettability depended significantly on the type of alginate utilized. Furthermore, Zn2+ and GO produced alginate films with increased water diffusion, wettability and opacity. However, neither the combination of GO with Zn2+ nor the use of different types of sodium alginates modified the antibacterial activity and cytotoxicity of the zinc alginates against these Gram-positive pathogens and human cells respectively.
Project description:Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.
Project description:The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.
Project description:Membrane methods exhibit great potential for application in radioactive liquid waste treatment. In this work, we prepared a reduced graphene oxide using the amino-hydrothermal method (AH-rGO) that exhibited effective rejection rates of 99.9% for CoCl2, ZnCl2, NiCl2, and radionuclide 60Co solutions with an ultrahigh water permeance of >71.9 L m-2 h-1 bar-1. The thickness of the AH-rGO membranes affects the water permeance, as the membrane with a thickness of ≈250 nm has the highest water permeance of up to 125.1 L m-2 h-1 bar-1 with the corresponding rejection rate of 86.8%. Importantly, this is the most permeable membrane with a satisfactory level of the rejection rate for typical radioactive ions of Co2+, Zn2+, and Ni2+. Moreover, the AH-rGO membranes presented excellent stability. These findings demonstrate the potential of reduced graphene oxide (rGO) membranes for radioactive liquid waste treatment.
Project description:Reverse electrodialysis is a promising method to harvest the osmotic energy stored between seawater and freshwater, but it has been a long-standing challenge to fabricate permselective membranes with the power density surpassing the industry benchmark of 5.0 W m-2 for half a century. Herein, a vertically transported graphene oxide (V-GO) with the combination of high ion selectivity and ultrafast ion permeation is reported, whose permeation is three orders of magnitude higher than the extensively studied horizontally transported GO (H-GO). By mixing artificial seawater and river water, an unprecedented high output power density of 10.6 W m-2 is obtained, outperforming all existing materials. Molecular dynamics (MD) simulations reveal the mechanism of the ultrafast transport in V-GO results from the quick entering of ions and the large accessible area as well as the apparent short diffusion paths in V-GO. These results will facilitate the practical application of osmotic energy and bring an innovative design strategy for various systems involving ultrafast transport, such as filtration and catalysis.
Project description:Antibacterial surfaces have an enormous economic and social impact on the worldwide technological fight against diseases. However, bacteria develop resistance and coatings are often not uniform and not stable in time. The challenge is finding an antibacterial coating that is biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces. Here we demonstrate an antibacterial cloak by laser printing of graphene oxide hydrogels mimicking the Cancer Pagurus carapace. We observe up to 90% reduction of bacteria cells. This cloak exploits natural surface patterns evolved to resist to microorganisms infection, and the antimicrobial efficacy of graphene oxide. Cell integrity analysis by scanning electron microscopy and nucleic acids release show bacteriostatic and bactericidal effect. Nucleic acids release demonstrates microorganism cutting, and microscopy reveals cells wrapped by the laser treated gel. A theoretical active matter model confirms our findings. The employment of biomimetic graphene oxide gels opens unique possibilities to decrease infections in biomedical applications and chirurgical equipment; our antibiotic-free approach, based on the geometric reduction of microbial adhesion and the mechanical action of Graphene Oxide sheets, is potentially not affected by bacterial resistance.
Project description:Graphene oxide (GO) has attracted attention as an excellent membrane material for water treatment and desalination owing to its high mechanical strength, hydrophilicity, and permeability. In this study, composite membranes were prepared by coating GO on various polymeric porous substrates (polyethersulfone, cellulose ester, and polytetrafluoroethylene) using suction filtration and casting methods. The composite membranes were used for dehumidification, that is, water vapor separation in the gas phase. GO layers were successfully prepared via filtration rather than casting, irrespective of the type of polymeric substrate used. The dehumidification composite membranes with a GO layer thickness of less than 100 nm showed a water permeance greater than 1.0 × 10-6 mol/(m2 s Pa) and a H2O/N2 separation factor higher than 104 at 25 °C and 90-100% humidity. The GO composite membranes were fabricated in a reproducible manner and showed stable performance as a function of time. Furthermore, the membranes maintained high permeance and selectivity at 80°C, indicating that it is useful as a water vapor separation membrane.
Project description:Thromboembolism caused by the use of extracorporeal membrane oxygenation (ECMO) remains common among patients with existing heart diseases and contributes to significant morbidity and mortality during the COVID-19 pandemic. Various surface modification strategies have been proposed, showing that the methacrylated alginate (MA-SA) hydrogel layer is transparent, which aids the observation of the thromboembolism from the inner wall of the tubing. In the combined dynamic and static blood of ECMO tubing inner surface in vitro experiments, it was also demonstrated that the adhesion of blood clots to the surface of vessels was remarkably reduced, and the MA-SA-based hydrogel coating could significantly prolong the activated partial thrombin time and block the endogenous coagulation. The favorable properties of natural polysaccharides of hydrogel coatings make them the best surface material choices to be applied for blood-contacting medical devices and significantly improve anticoagulant performance.