Project description:The distinct ways the COVID-19 pandemic has been unfolding in different countries and regions suggest that local societal and governmental structures play an important role not only for the baseline infection rate, but also for short and long-term reactions to the outbreak. We propose to investigate the question of how societies as a whole, and governments in particular, modulate the dynamics of a novel epidemic using a generalization of the SIR model, the reactive SIR (short-term and long-term reaction) model. We posit that containment measures are equivalent to a feedback between the status of the outbreak and the reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the reaction of governments and individuals to daily cases and fatalities. The reaction to the cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by long-term reaction. We present the exact phase space solution of the controlled SIR model and use it to quantify containment policies for a large number of countries in terms of short and long-term control parameters. We find increased contributions of long-term control for countries and regions in which the outbreak was suppressed substantially together with a strong correlation between the strength of societal and governmental policies and the time needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions we identified a predictive relation between the number of fatalities within a fixed period before and after the peak of daily fatality counts, which allows to gauge the cumulative medical load of COVID-19 outbreaks that should be expected after the peak. These results suggest that the proposed model is applicable not only for understanding the outbreak dynamics, but also for predicting future cases and fatalities once the effectiveness of outbreak suppression policies is established with sufficient certainty. Finally, we provide a web app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space representation of real-world COVID-19 data and for exporting the preprocessed data for further analysis.
Project description:BackgroundPopulation mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases.ObjectiveThe aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina.MethodsThis longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting.ResultsPopulation mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and 81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties, the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The 14-day prediction accuracy ranged from 60.3%-74.5%.ConclusionsUsing Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive measures and resource relocations to curb disease outbreaks and their negative influences.
Project description:BackgroundContact mixing plays a key role in the spread of COVID-19. Thus, mobility restrictions of varying degrees up to and including nationwide lockdowns have been implemented in over 200 countries. To appropriately target the timing, location, and severity of measures intended to encourage social distancing at a country level, it is essential to predict when and where outbreaks will occur, and how widespread they will be.MethodsWe analyze aggregated, anonymized health data and cell phone mobility data from Israel. We develop predictive models for daily new cases and the test positivity rate over the next 7 days for different geographic regions in Israel. We evaluate model goodness of fit using root mean squared error (RMSE). We use these predictions in a five-tier categorization scheme to predict the severity of COVID-19 in each region over the next week. We measure magnitude accuracy (MA), the extent to which the correct severity tier is predicted.ResultsModels using mobility data outperformed models that did not use mobility data, reducing RMSE by 17.3% when predicting new cases and by 10.2% when predicting the test positivity rate. The best set of predictors for new cases consisted of 1-day lag of past 7-day average new cases, along with a measure of internal movement within a region. The best set of predictors for the test positivity rate consisted of 3-days lag of past 7-day average test positivity rate, along with the same measure of internal movement. Using these predictors, RMSE was 4.812 cases per 100,000 people when predicting new cases and 0.79% when predicting the test positivity rate. MA in predicting new cases was 0.775, and accuracy of prediction to within one tier was 1.0. MA in predicting the test positivity rate was 0.820, and accuracy to within one tier was 0.998.ConclusionsUsing anonymized, macro-level data human mobility data along with health data aids predictions of when and where COVID-19 outbreaks are likely to occur. Our method provides a useful tool for government decision makers, particularly in the post-vaccination era, when focused interventions are needed to contain COVID-19 outbreaks while mitigating the collateral damage from more global restrictions.
Project description:Introduction. The risk of infectious disease transmission, including COVID-19, is disproportionately high in correctional facilities due to close living conditions, relatively low levels of vaccination, and reduced access to testing and treatment. While much progress has been made on describing and mitigating COVID-19 and other infectious disease risk in jails and prisons, there are open questions about which data can best predict future outbreaks. Methods. We used facility data and demographic and health data collected from 24 prison facilities in the Pennsylvania Department of Corrections from March 2020 to May 2021 to determine which sources of data best predict a coming COVID-19 outbreak in a prison facility. We used machine learning methods to cluster the prisons into groups based on similar facility-level characteristics, including size, rurality, and demographics of incarcerated people. We developed logistic regression classification models to predict for each cluster, before and after vaccine availability, whether there would be no cases, an outbreak defined as 2 or more cases, or a large outbreak, defined as 10 or more cases in the next 1, 2, and 3 d. We compared these predictions to data on outbreaks that occurred. Results. Facilities were divided into 8 clusters of sizes varying from 1 to 7 facilities per cluster. We trained 60 logistic regressions; 20 had test sets with between 35% and 65% of days with outbreaks detected. Of these, 8 logistic regressions correctly predicted the occurrence of an outbreak more than 55% of the time. The most common predictive feature was incident cases among the incarcerated population from 2 to 32 d prior. Other predictive features included the number of tests administered from 1 to 33 d prior, total population, test positivity rate, and county deaths, hospitalizations, and incident cases. Cumulative cases, vaccination rates, and race, ethnicity, or age statistics for incarcerated populations were generally not predictive. Conclusions. County-level measures of COVID-19, facility population, and test positivity rate appear as potential promising predictors of COVID-19 outbreaks in correctional facilities, suggesting that correctional facilities should monitor community transmission in addition to facility transmission to inform future outbreak response decisions. These efforts should not be limited to COVID-19 but should include any large-scale infectious disease outbreak that may involve institution-community transmission.HighlightsThe risk of infectious disease transmission, including COVID-19, is disproportionately high in correctional facilities.We used machine learning methods with data collected from 24 prison facilities in the Pennsylvania Department of Corrections to determine which sources of data best predict a coming COVID-19 outbreak in a prison facility.Key predictors included county-level measures of COVID-19, facility population, and the test positivity rate in a facility.Fortifying correctional facilities with the ability to monitor local community rates of infection (e.g., though improved interagency collaboration and data sharing) along with continued testing of incarcerated people and staff can help correctional facilities better predict-and respond to-future infectious disease outbreaks.
Project description:Few study has revealed spatial transmission characteristics of COVID-19 in Wuhan, China. We aimed to analyze the spatiotemporal spread of COVID-19 in Wuhan and its influence factors. Information of 32,682 COVID-19 cases reported through March 18 were extracted from the national infectious disease surveillance system. Geographic information system methods were applied to analysis transmission of COVID-19 and its influence factors in different periods. We found decrease in effective reproduction number (Rt) and COVID-19 related indicators through taking a series of effective public health measures including restricting traffic, centralized quarantine and strict stay-at home policy. The distribution of COVID-19 cases number in Wuhan showed obvious global aggregation and local aggregation. In addition, the analysis at streets-level suggested population density and the number of hospitals were associated with COVID-19 cases number. The epidemic situation showed obvious global and local spatial aggregations. High population density with larger number of hospitals may account for the aggregations. The epidemic in Wuhan was under control in a short time after strong quarantine measures and restrictions on movement of residents were implanted.
Project description:Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.
Project description:COVID-19 is highly transmissible and containing outbreaks requires a rapid and effective response. Because infection may be spread by people who are pre-symptomatic or asymptomatic, substantial undetected transmission is likely to occur before clinical cases are diagnosed. Thus, when outbreaks occur there is a need to anticipate which populations and locations are at heightened risk of exposure. In this work, we evaluate the utility of aggregate human mobility data for estimating the geographical distribution of transmission risk. We present a simple procedure for producing spatial transmission risk assessments from near-real-time population mobility data. We validate our estimates against three well-documented COVID-19 outbreaks in Australia. Two of these were well-defined transmission clusters and one was a community transmission scenario. Our results indicate that mobility data can be a good predictor of geographical patterns of exposure risk from transmission centres, particularly in outbreaks involving workplaces or other environments associated with habitual travel patterns. For community transmission scenarios, our results demonstrate that mobility data add the most value to risk predictions when case counts are low and spatially clustered. Our method could assist health systems in the allocation of testing resources, and potentially guide the implementation of geographically targeted restrictions on movement and social interaction.
Project description:BackgroundAs Coronavirus disease 2019 (COVID-19) pandemic led to the unprecedent large-scale repeated surges of epidemics worldwide since the end of 2019, data-driven analysis to look into the duration and case load of each episode of outbreak worldwide has been motivated.MethodsUsing open data repository with daily infected, recovered and death cases in the period between March 2020 and April 2021, a descriptive analysis was performed. The susceptible-exposed-infected-recovery model was used to estimate the effective productive number (Rt). The duration taken from Rt > 1 to Rt < 1 and case load were first modelled by using the compound Poisson method. Machine learning analysis using the K-means clustering method was further adopted to classify patterns of community-acquired outbreaks worldwide.ResultsThe global estimated Rt declined after the first surge of COVID-19 pandemic but there were still two major surges of epidemics occurring in September 2020 and March 2021, respectively, and numerous episodes due to various extents of Nonpharmaceutical Interventions (NPIs). Unsupervised machine learning identified five patterns as "controlled epidemic", "mutant propagated epidemic", "propagated epidemic", "persistent epidemic" and "long persistent epidemic" with the corresponding duration and the logarithm of case load from the lowest (18.6 ± 11.7; 3.4 ± 1.8)) to the highest (258.2 ± 31.9; 11.9 ± 2.4). Countries like Taiwan outside five clusters were classified as no community-acquired outbreak.ConclusionData-driven models for the new classification of community-acquired outbreaks are useful for global surveillance of uninterrupted COVID-19 pandemic and provide a timely decision support for the distribution of vaccine and the optimal NPIs from global to local community.
Project description:OBJECTIVES:To assess disease trends, testing practices, community surveillance, case-fatality and excess deaths in children as compared with adults during the first pandemic peak in England. SETTING:England. PARTICIPANTS:Children with COVID-19 between January and May 2020. MAIN OUTCOME MEASURES:Trends in confirmed COVID-19 cases, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity rates in children compared with adults; community prevalence of SARS-CoV-2 in children with acute respiratory infection (ARI) compared with adults, case-fatality rate in children with confirmed COVID-19 and excess childhood deaths compared with the previous 5 years. RESULTS:Children represented 1.1% (1,408/129,704) of SARS-CoV-2 positive cases between 16 January 2020 and 3 May 2020. In total, 540 305 people were tested for SARS-COV-2 and 129,704 (24.0%) were positive. In children aged <16 years, 35,200 tests were performed and 1408 (4.0%) were positive for SARS-CoV-2, compared to 19.1%-34.9% adults. Childhood cases increased from mid-March and peaked on 11 April before declining. Among 2,961 individuals presenting with ARI in primary care, 351 were children and 10 (2.8%) were positive compared with 9.3%-45.5% in adults. Eight children died and four (case-fatality rate, 0.3%; 95% CI 0.07% to 0.7%) were due to COVID-19. We found no evidence of excess mortality in children. CONCLUSIONS:Children accounted for a very small proportion of confirmed cases despite the large numbers of children tested. SARS-CoV-2 positivity was low even in children with ARI. Our findings provide further evidence against the role of children in infection and transmission of SARS-CoV-2.