Project description:Abstract With a 2-year survival less than 20%, Diffuse Intrinsic Pontine Glioma (DIPG) is the principal cause of pediatric death. Despite recent advances in the current treatments, the outcome for children with DIPGs remains dismal. Since the approval of T-VEC for melanoma by the FDA, oncolytic adenoviruses have emerged as a promising therapeutic strategy for brain tumors. Thus, our group launched the first world clinical trial phase I with the oncolytic adenovirus Delta-24-RGD (DNX-2401 in the clinic) for newly diagnosed DIPG (NCT03178032), which has shown safety and feasibility. Despite DNX-2401 increases the recruitment of T cells into the tumor, they usually become inactive due to the non-responsive tumor microenvironment evidencing the urgent need to improve this strategy focusing on the generation of effective long-term immune responses. Therefore, we decided to combine the Delta-24-RGD with the targeting of the costimulatory molecule CD40 in immunocompetent mice bearing orthotopic DIPG. The activation of the CD40 receptor, which is expressed by antigen presenting cells (APC) such as microglia, macrophages, and dendritic cells, is known to increase antigen presentation and enable T-cell priming and activation. Here, we observed that in addition to Delta-24-RGD anti-tumor effects, the stimulation of CD40 (using an agonistic antibody) on the tumor APCs results in a remodeling of the tumor immune compartment towards a proinflammatory scenario and a more efficient T-cell infiltration. Of importance, the combination therapy extends survival of treated mice as compared to single treatments or non-treated mice. In addition, we observe a complete regression of tumors in more than 40% of treated mice and the development of long-term anti-tumor immunity. We believe that these results provide a translational breakthrough in the treatment of these lethal tumors and open the door for a future innovative clinical trial.
Project description:BackgroundHuman species C adenovirus serotype 5 (Ad5) is the archetype oncolytic adenovirus and has been used in the vast majority of preclinical and clinical tests. While Ad5 can be robust, species C Ad6 has lower seroprevalence, side effects, and appears to be more potent as a systemic therapy against a number of tumors than Ad5. Historically, there have only been four species C human adenoviruses: serotypes 1, 2, 5, and 6. More recently a new species C adenovirus, Ad57, was identified. Ad57 is most similar to Ad6 with virtually all variation in their capsid proteins occurring in the hypervariable regions (HVRs) of their hexon proteins. Most adenovirus neutralizing antibodies target the HVRs on adenoviruses. This led us to replace the hexon HVRs in Ad6 with those from Ad57 to create a new virus called Ad657 and explore this novel species C platform's utility as an oncolytic virus.MethodsThe HVR region from Ad57 was synthesized and used to replace the Ad6 HVR region by homologous recombination in bacteria generating a new viral platform that we call Ad657. Replication-competent Ad5, Ad6, and Ad657 were compared in vitro and in vivo for liver damage and oncolytic efficacy against prostate cancers after single intravenous treatment in mice.ResultsAd5, Ad6, and Ad657 had similar in vitro oncolytic activity against human prostate cancer cells. Ad5 provoked the highest level of liver toxicity after intravenous injection and Ad657 caused the least damage in mice. Previous data demonstrated that Ad6 was superior to Ad5 at killing distant subcutaneous prostate cancer tumors in mouse models after a intravenous injection. Given this, Ad657 was compared to the Ad6 benchmark virus by single intravenous injection into mice bearing subcutaneous human DU145 prostate cancers. Under these conditions, Ad657 first infected the liver and then reached distant tumors. Both Ad6 and Ad657 mediated significant delays in tumor growth and extension of survival with Ad6 mediating higher efficacy.ConclusionsThese data suggest that Ad657 may have utility as a local or systemic oncolytic virotherapy for prostate cancers. These data also lay the foundation for serotype-switching with oncolytic species C Ads.
Project description:Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.
Project description:BackgroundStudying the floristic diversity of a certain forest is a basic aspect of the design and management of forest vegetation; and consequently this study focused on the plant diversity and community analysis of the Sele-Nono forest. For the current study, plants were sampled from 90 plots using a stratified random sampling technique along the established strata of the study forest. In all the plots, both floristic and environmental data that were relevant to the study were collected following the state of the art. Based on the collected data, the community types, ordination, floristic diversity, and threats to the forest were analyzed using R-package and SPSS software.ResultsCluster analysis produced seven distinct community types which significantly differed among themselves (Cophentic correlation coefficient = 0.785, P < 0.001) of which community types 2 and 6 were relatively poor; whereas communities 1 and 4 were rich in terms of their species richness and diversity. In addition, Canonical Correspondence Analysis (CCA) suggests that a number of environmental factors such as altitude and slope (topographic factor), OM and N (edaphic factors) and disturbance were the main drivers for the current distribution of plant species and disparity in plant community composition in Sele-Nono forest. Moreover, the study revealed high beta diversity ([Formula: see text] >12) of plant species at the landscape level (i.e., throughout the study forest). Deforestation for agricultural land expansion and degradation through selective logging are the main threats to the Sele-Nono forest.ConclusionsThe present study revealed that the Sele-Nono forest is a large and heterogenous forest at the landscape level (150, 325.27 ha; [Formula: see text] >12). Moreover, it is one of the richest and diverse forest ecosystems in terms of plant biodiversity, and it could qualify to be labeled as a keystone ecosystem. However, currently it is exposed to a variety of threats. We recommend the forest to be developed into a biosphere reserve. We also recommend the prioritization of areas belonging to community types 2 and 6 of the forest for any possible conservation actions so as to maximize species richness and diversity of the native plants of the area.
Project description:Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. Key messages: Cyclin E promoter activity is high in cancer cells and enhanced by adenovirus infection. Cyclin E promoter is used to control the E1a gene of a tumor-specific oncolytic adenovirus. Ad-cycE efficiently targets cancer cells and induces oncolysis. Ad-cycE significantly repressed xenograft tumor and prolonged survival.
Project description:Mesenchymal stem cells (MSCs) loaded with oncolytic viruses are presently being investigated as a new modality of advanced/metastatic tumors treatment and enhancement of virotherapy. MSCs can, however, either promote or suppress tumor growth. To address the critical question of how MSCs loaded with oncolytic viruses affect virotherapy outcomes and tumor growth patterns in a tumor microenvironment, we developed and analyzed an integrated mathematical-experimental model. We used the model to describe both the growth dynamics in our experiments of firefly luciferase-expressing Hep3B tumor xenografts and the effects of the immune response during the MSCs-based virotherapy. We further employed it to explore the conceptual clinical feasibility, particularly, in evaluating the relative significance of potential immune promotive/suppressive mechanisms induced by MSCs loaded with oncolytic viruses. We were able to delineate conditions which may significantly contribute to the success or failure of MSC-based virotherapy as well as generate new hypotheses. In fact, one of the most impactful outcomes shown by this investigation, not inferred from the experiments alone, was the initially counter-intuitive fact that using tumor-promoting MSCs as carriers is not only helpful but necessary in achieving tumor control. Considering the fact that it is still currently a controversial debate whether MSCs exert a pro- or anti-tumor action, mathematical models such as this one help to quantitatively predict the consequences of using MSCs for delivering virotherapeutic agents in vivo. Taken together, our results show that MSC-mediated systemic delivery of oncolytic viruses is a promising strategy for achieving synergistic anti-tumor efficacy with improved safety profiles.
Project description:Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvβ6 integrin-selective peptide, A20, to target αvβ6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvβ6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvβ6+ cancer cell lines demonstrated significantly increased transduction mediated by αvβ6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvβ6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvβ6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.
Project description:Adenovirus type 2 RNA splicing sites were mapped by using deep cDNA sequencing. The majority of the previously identified splice sites were detected. In addition, novel splicing sites were identified
Project description:Oncolytic viruses (OVs) are emerging as potential treatment options for cancer. Natural and genetically engineered viruses exhibit various antitumor mechanisms. OVs act by direct cytolysis, the potentiation of the immune system through antigen release, and the activation of inflammatory responses or indirectly by interference with different types of elements in the tumor microenvironment, modification of energy metabolism in tumor cells, and antiangiogenic action. The action of OVs is pleiotropic, and they show varied interactions with the host and tumor cells. An important impediment in oncolytic virotherapy is the journey of the virus into the tumor cells and the possibility of its binding to different biological and nonbiological vectors. OVs have been demonstrated to eliminate cancer cells that are resistant to standard treatments in many clinical trials for various cancers (melanoma, lung, and hepatic); however, there are several elements of resistance to the action of viruses per se. Therefore, it is necessary to evaluate the combination of OVs with other standard treatment modalities, such as chemotherapy, immunotherapy, targeted therapies, and cellular therapies, to increase the response rate. This review provides a comprehensive update on OVs, their use in oncolytic virotherapy, and the future prospects of this therapy alongside the standard therapies currently used in cancer treatment.
Project description:The recent introduction of viruses as a weapon against cancer can be regarded as one of the most intriguing approaches in the context of precision medicine. The role of immune checkpoint inhibitors has been extensively studied in early and advanced cancer stages, with extraordinary results. Although there is a good tolerability profile, especially when compared with conventional chemotherapy, severe immune-related adverse events have emerged as a potential limitation. Moreover, there are still treatment-resistant cases and thus further treatment options need to be implemented. Several in vitro and in vivo studies have been conducted and are ongoing to develop oncolytic viruses (OVs) as a tool to modulate the immune system response. OVs are attenuated viruses that can kill cancer cells after having infected them, producing microenvironment remodelling and antitumour immune response. The potential of oncolytic virotherapy is to contrast the absence of T cell infiltrates, converting 'cold' tumours into 'hot' ones, thus improving the performance of the immune system. Breast cancer, the second most common cause of cancer-related deaths among women, is considered a 'cold' tumour. In this context, oncolytic virotherapy might well be considered as a promising strategy. This review summarises the current status, clinical applications and future development of OVs, focusing on breast cancer treatment.