PAN-cODE: COVID-19 forecasting using conditional latent ODEs.
Ontology highlight
ABSTRACT: The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths around the world and revealed the need for data-driven models of pandemic spread. Accurate pandemic caseload forecasting allows informed policy decisions on the adoption of non-pharmaceutical interventions (NPIs) to reduce disease transmission. Using COVID-19 as an example, we present Pandemic conditional Ordinary Differential Equation (PAN-cODE), a deep learning method to forecast daily increases in pandemic infections and deaths. By using a deep conditional latent variable model, PAN-cODE can generate alternative caseload trajectories based on alternate adoptions of NPIs, allowing stakeholders to make policy decisions in an informed manner. PAN-cODE also allows caseload estimation for regions that are unseen during model training. We demonstrate that, despite using less detailed data and having fully automated training, PAN-cODE's performance is comparable to state-of-the-art methods on 4-week-ahead and 6-week-ahead forecasting. Finally, we highlight the ability of PAN-cODE to generate realistic alternative outcome trajectories on select US regions.
SUBMITTER: Shi R
PROVIDER: S-EPMC9667190 | biostudies-literature | 2022 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA