Project description:Background and aimsThe genetic PNPLA3 polymorphism I148M has been extensively associated with higher risk for development and progression of NAFLD towards NASH.MethodsPNPLA3 and α-SMA expression were quantified in liver biopsies collected from NASH patients (n = 26) with different fibrosis stages and PNPLA3 genotypes. To study the potential mechanisms driving PNPLA3 expression during NASH progression towards fibrosis, hepatocytes and hepatic stellate cells (HSCs) were cultivated in low and high glucose medium. Moreover, hepatocytes were treated with increasing concentrations of palmitic acid alone or in combination with glucose. Conditioned media were collected from challenged hepatocytes to stimulate HSCs.ResultsTissue expression of PNPLA3 was significantly enhanced in biopsies of patients carrying the I148M polymorphism compared to wild type (WT). In NASH biopsies, PNPLA3 significantly correlated with fibrosis stage and α-SMA levels independently of PNPLA3 genotype. In line, PNPLA3 expression was higher in α-SMA positive cells. Low glucose increased PNPLA3 in HSCs, whereas high glucose induced PNPLA3 and de-novo lipogenesis-related genes expression in hepatocytes. Palmitic acid induced fat accumulation and cell stress markers in hepatocytes, which could be counteracted by oleic acid. Conditioned media collected from lipotoxic challenged hepatocytes markedly induced PNPLA3 mRNA and protein levels, fibrogenic and autophagic markers and promoted migration in HSCs. Notably, conditioned media collected from hepatocytes cultivated with both glucose and palmitic acid exacerbated HSCs migration, PNPLA3 and fibrogenic gene expression, promoting release of cytokines from HSCs.ConclusionsCollectively, our observations uncover the diverse metabolic regulation of PNPLA3 among different hepatic cell populations and support its relation to fibrosis progression.
Project description:Aberrant metabolism has been identified as a main driver of cancer. Profiling of metabolism-related pathways in cancer furthers the understanding of tumor plasticity and identification of potential metabolic vulnerabilities. In this prospective controlled study, we established transcriptomic profiles of metabolism-related pathways in endometrial cancer (EC) using a novel method, NanoString nCounter Technology. Fifty-seven ECs and 30 normal endometrial specimens were studied using the NanoString Metabolic Panel, further validated by qRT-PCR with a very high similarity. Statistical analyses were by GraphPad PRISM and Weka software. The analysis identified 11 deregulated genes (FDR ≤ 0.05; |FC|≥ 1.5) in EC: SLC7A11; SLC7A5; RUNX1; LAMA4; COL6A3; PDK1; CCNA1; ENO1; PKM; NR2F1; and NAALAD2. Gene ontology showed direct association of these genes with 'central carbon metabolism (CCM) in cancer'. Thus, 'CCM in cancer' appears to create one of the main metabolic axes in EC. Further, transcriptomic data were functionally validated with drug repurposing on three EC cell lines, with several drug candidates suggested. These results lay the foundation for personalized therapeutic strategies in this cancer. Metabolic plasticity represents a promising diagnostic and therapeutic option in EC.
Project description:Non-alcoholic steatohepatitis (NASH) is a major cause of chronic liver disease. However, most available animal models fail to reflect the whole spectrum of the disease. Liver fibrosis and portal hypertension are the strongest prognostic markers in advanced NASH. We herein aimed at developing a new model of NASH in male rats, obtained using a multi-hit protocol that combines the administration of a high fat and high-cholesterol diet with CCl4 and phenobarbital. Following this protocol, rats showed the full characteristics of advanced human NASH after 10 weeks and NASH with cirrhosis by 24 weeks. Specifically, our NASH rats exhibited: steatosis and metabolic syndrome, lipotoxicity, hepatocellular ballooning necrosis, inflammation and importantly, marked hepatic fibrosis and significant portal hypertension. Furthermore, a whole transcriptomic analysis of liver tissue from our rat model using next generation sequencing was compared with human NASH and illustrated the similarity of this pre-clinical model with the human disease. Pathway enrichment analysis showed that NASH animals shared a relevant number of central pathways involved in NASH pathophysiology, such as those related with cell death, as well as inflammatory or matrix remodeling. The present study defines a pre-clinical model of moderate and advanced NASH that mimics the human disease, including pathophysiologic characteristics and transcriptomic signature.
Project description:Hepatocellular carcinoma (HCC) is a common malignancy. Despite progress in treatment, HCC is still one of the most lethal cancers. Therefore, deepening molecular mechanisms underlying HCC pathogenesis and development is required to uncover new therapeutic strategies. Metabolic reprogramming is emerging as a critical player in promoting tumor survival and proliferation to sustain increased metabolic needs of cancer cells. Among the metabolic pathways, the tricarboxylic acid (TCA) cycle is a primary route for bioenergetic, biosynthetic, and redox balance requirements of cells. In recent years, a large amount of evidence has highlighted the relevance of the TCA cycle rewiring in a variety of cancers. Indeed, aberrant gene expression of several key enzymes and changes in levels of critical metabolites have been observed in many solid human tumors. In this review, we summarize the role of the TCA cycle rewiring in HCC by reporting gene expression and activity dysregulation of enzymes relating not only to the TCA cycle but also to glutamine metabolism, malate/aspartate, and citrate/pyruvate shuttles. Regarding the transcriptional regulation, we focus on the link between NF-κB-HIF1 transcriptional factors and TCA cycle reprogramming. Finally, the potential of metabolic targets for new HCC treatments has been explored.
Project description:Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.
Project description:We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.
Project description:Non-alcoholic fatty liver disease (NAFLD) is considered the most frequent chronic hepatic disease in the general population, while it is the first cause of liver transplantation in the US. NAFLD patients will subsequently develop non-alcoholic steatohepatitis (NASH), which is characterized by aberrant hepatocellular inflammation with or without the presence of fibrosis. The lack of specific biomarkers and therapeutic strategies makes non-alcoholic steatohepatitis (NASH) management a difficult task for clinicians. Extracellular vesicles (EVs) constitute a heterogenic population of vesicles produced by inward or outward plasma-membrane budding. There is an emerging connection between autophagy EVs production, via an unconventional non-degradative procedure. Alterations in the amount of the secreted EVs and the cargo they carry are also involved in the disease progression and development of NASH. Autophagy constitutes a multistep lysosomal degradative pathway that reassures cell homeostasis and survival under stressful conditions, such as oxygen and energy deprivation. It prevents cellular damage by eliminating defected proteins or nοn-functional intracellular organelles. At the same time, it reassures the optimal conditions for the cells via a different mechanism that includes the removal of cargo via the secretion of EVs. Similarly, autophagy machinery is also associated with the pathogenetic mechanism of NAFLD, while it has a significant implication for the progression of the disease and the development of NASH. In this review, we will shed light on the interplay between autophagy and EVs in NASH, the emerging connection of EVs production with the autophagy pathway, and their possible manipulation for developing future therapeutic strategies for NASH.
Project description:Non-alcoholic fatty liver disease (NAFLD) is one the fastest emerging manifestations of the metabolic syndrome worldwide. Non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, may culminate into cirrhosis and hepatocellular cancer (HCC) and is presently a leading cause of liver transplant. Although a steady progress is seen in understanding of the disease epidemiology, pathogenesis and identifying therapeutic targets, the slowest advancement is seen in the therapeutic field. Currently, there is no FDA approved therapy for this disease and appropriate therapeutic targets are urgently warranted. In this review we discuss the role of lifestyle intervention, pharmacological agents, surgical approaches, and gut microbiome, with regard to therapy for NASH. In particular, we focus the role of insulin sensitizers, thyroid hormone mimetics, antioxidants, cholesterol lowering drugs, incretins and cytokines as therapeutic targets for NASH. We highlight these targets aiming to optimize the future for NASH therapy.
Project description:Chronic inflammatory bowel disease (IBD) is associated with an increased risk of colorectal cancer (CRC) in historical cohorts. The pathways of oncogenesis of these CRCs, which are very different clinically from de novo CRCs, are currently unknown. The aim of our work is to identify specific molecular signatures of CRC occurring in the setting of IBD.