Calcitriol inhibits arsenic-promoted tumorigenesis through regulation of arsenic-uptake in a human keratinocyte cell line.
Ontology highlight
ABSTRACT: Chronic arsenic exposure from drinking water causes a variety of diseases and it is now recognized that at least 140 million people in 50 countries have been drinking water containing arsenic at levels above the WHO provisional guideline value of 10 μg/L. Long-term exposure to arsenic is associated with various types of cancers in humans including skin cancers. However, there is limited information on key molecules regulating arsenic-promoted carcinogenesis, and methods for the prevention and therapy of arsenic-promoted carcinogenesis have not yet been fully developed. Our in vitro study in human nontumorigenic HaCaT skin keratinocytes showed that calcitriol (activated vitamin D3, 1,25(OH)2D3) inhibited arsenic-mediated anchorage-independent growth with downregulations of cancer-related activation of MEK, ERK1/2 and AKT and activity of cell cycle. Moreover, calcitriol significantly repressed arsenic uptake in HaCaT cells with inhibition of expressions of aquaporin genes (AQP7, 9 and 10) which were modified by arsenic exposure. VDR, a vitamin D receptor, expression was significantly increased by arsenic exposure whereas calcitriol had no effect on its expression. These results suggest that treatment of calcitriol inhibits arsenic uptake via suppressions of aquaglyceroporin gene expressions resulting in inhibition of arsenic-promoted tumorigenesis in keratinocytes.
SUBMITTER: Yajima I
PROVIDER: S-EPMC9729888 | biostudies-literature | 2022
REPOSITORIES: biostudies-literature
ACCESS DATA