Project description:Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Project description:The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.
Project description:Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Project description:Patients with acute bronchospasm can show a distinct slope of the capnogram ("shark fin") as a result of asynchronous alveolar excretion. Although the slope of the upward alveolar plateau (phase III) in the capnogram waveforms of non-intubated patients is known to help monitor the therapeutic response to acute bronchospasm, little is known about the significance of its slope among intubated patients. Therefore, we quantified the phase III slope of an intubated patient with acute asthma to investigate whether capnogram waveforms could be useful for identifying the response to antibronchospasm treatment in real time.Case summaryThe patient was a 53-year-old man who had a history of asthma. He presented to the emergency department with the primary complaint of respiratory distress. He was diagnosed with severe asthma attack and required invasive mechanical ventilation for 10 days, during which we quantified the phase III slope of the capnogram. The phase III slope decreased during treatment, with a significant reduction from the third to the fourth day; however, a significant decrease in end-tidal carbon dioxide (EtCO2) was observed from the fifth to the sixth day. We found that the slope values decreased earlier than EtCO2 reduction, although the absolute EtCO2 values eventually decreased in response to antibronchospasm treatment.ConclusionThere were several reports that evaluated the phase III slope in non-intubated patients with asthma, but this is the first report measuring the phase III slope in an intubated patient over several days. Capnogram waveforms may serve as useful real-time indicators to monitor acute bronchospasm among mechanically ventilated patients.
Project description:Orosomucoid-like (ORMDL)3 has been strongly linked with asthma in genetic association studies. Because allergen challenge induces lung ORMDL3 expression in wild-type mice, we have generated human ORMDL3 zona pellucida 3 Cre (hORMDL3(zp3-Cre)) mice that overexpress human ORMDL3 universally to investigate the role of ORMDL3 in regulating airway inflammation and remodeling. These hORMDL3(zp3-Cre) mice have significantly increased levels of airway remodeling, including increased airway smooth muscle, subepithelial fibrosis, and mucus. hORMDL3(zp3-Cre) mice had spontaneously increased airway responsiveness to methacholine compared to wild-type mice. This increased airway remodeling was associated with selective activation of the unfolded protein response pathway transcription factor ATF6 (but not Ire1 or PERK). The ATF6 target gene SERCA2b, implicated in airway remodeling in asthma, was strongly induced in the lungs of hORMDL3(zp3-Cre) mice. Additionally, increased levels of expression of genes associated with airway remodeling (TGF-?1, ADAM8) were detected in airway epithelium of these mice. Increased levels of airway remodeling preceded increased levels of airway inflammation in hORMDL3(zp3-Cre) mice. hORMDL3(zp3-Cre) mice had increased levels of IgE, with no change in levels of IgG, IgM, and IgA. These studies provide evidence that ORMDL3 plays an important role in vivo in airway remodeling potentially through ATF6 target genes such as SERCA2b and/or through ATF6-independent genes (TGF-?1, ADAM8).
Project description:Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Project description:Background and objectiveAsthma is a common chronic disorder of the airway, and its disability and mortality rates continue to increase each year. Due to the lack of an ideal treatment, asthma control in China remains unsatisfactory. Airway remodeling is the pathological basis for the eventual development of the fixed airflow limitation in asthmatic patients. Early diagnosis and the prevention of airway remodeling has the potential to decrease disease severity, to improve control, and to prevent disease expression.MethodsThis article presents an overview. The literature was combed through via CNKi and PubMed according to the listed keywords. We considered Chinese and English original publications (basic science and clinical), reviews and abstracts of 21th Century.Key content and findingsWe review the pathological features and pathogenesis of, and the interventional treatment options for airway remodeling in asthmatic patients, emphasizing the importance of airway remodeling in asthma and providing novel insights into the prevention and control of asthma.ConclusionsThus, there have been research advances in airway remodeling, especially in the areas of slowing down or reversing airway remodeling. As growing studies showed, treating airway remodeling is a promising strategy in preventing the occurrence and progression of asthma. Breakthroughs in these difficulties airway remodeling still facing will open up new avenues in the research and treatment of asthma.
Project description:Proline and its synthesis enzyme pyrroline-5-carboxylate reductase 1 (PYCR1) are implicated in epithelial-mesenchymal transition (EMT), yet how proline and PYCR1 function in allergic asthmatic airway remodeling via EMT has not yet been addressed to our knowledge. In the present study, increased levels of plasma proline and PYCR1 were observed in patients with asthma. Similarly, proline and PYCR1 in lung tissues were high in a murine allergic asthma model induced by house dust mites (HDMs). Pycr1 knockout decreased proline in lung tissues, with reduced airway remodeling and EMT. Mechanistically, loss of Pycr1 restrained HDM-induced EMT by modulating mitochondrial fission, metabolic reprogramming, and the AKT/mTORC1 and WNT3a/β-catenin signaling pathways in airway epithelial cells. Therapeutic inhibition of PYCR1 in wild-type mice disrupted HDM-induced airway inflammation and remodeling. Deprivation of exogenous proline relieved HDM-induced airway remodeling to some extent. Collectively, this study illuminates that proline and PYCR1 involved with airway remodeling in allergic asthma could be viable targets for asthma treatment.
Project description:RationaleDespite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction.ObjectivesTo evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling.MethodsIn bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis.Measurements and main resultsAirway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p=0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p=0.002) and Ki67 was increased (p<0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p<0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p=0.002), suggesting increased cell death.ConclusionsIn subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe asthma.