Project description:BackgroundN6-methyladenosine (m6A)-mediated ribonucleic acid (RNA) methylation is considered to be the most significant and abundant epigenetic modification in eukaryotic cells, and plays an essential role in the carcinogenesis and molecular pathogenesis of hepatocellular carcinoma (HCC). However, the relationship between m6A regulation and immune cell infiltration of the tumor immune microenvironment (TIME) has not yet been clarified. We aimed to investigate the roles of m6A RNA gene regulators in HCC immune regulation and prognosis.MethodsThe Cancer Genome Atlas (TCGA) database was used, and unsupervised clustering of 21 m6A regulators was performed based on differential gene expression. Gene Set Variation Analysis (GSVA), single-sample Gene Set Enrichment Analysis (ssGSEA), the empirical Bayes method, and m6A scores were used in our analyses.ResultsOf 433 samples, 101 (23.22%) had m6A regulatory factor mutations. From these, we identified three m6A subtypes, which correlated with different TIME phenotypes: immune rejection, immune infiltration, and immune deficiency. Tumors with low methyltransferase-like 3 (METTL3) expression had increased infiltration of dendritic cells (DCs) in the TIME. Reduced METTL3 expression also led to an overall increase in expression of major histocompatibility complex (MHC) molecules, costimulatory molecules, and adhesion molecules. The m6A subtypes were scored and analyzed for correlations. Patients with epithelial-mesenchymal transition (EMT) subtypes had lower m6A scores than the other three molecular subtypes. Survival analysis found that patients with low m6A scores had better overall survival [hazard ratio (HR) 1.6 (1.1-2.3)] and a 1.16 times better 5-year survival rate than patients with high m6A scores (56% vs. 48%).ConclusionsOur results demonstrated that three different m6A modification subtypes contribute to immune regulation in HCC and have potential as novel prognostic indicators and immune therapeutic targets.
Project description:BackgroundBreast cancer is one of the most common malignant tumor and the prognosis remains unsatisfying. Various studies demonstrate that m6A modulators are new predictors of prognosis in immune microenvironment. We aimed to identify several m6A regulator-related immunogenes and explore the relationship between m6A regulator-related immunogenes and breast cancer prognosis as well as the tumor immune microenvironment (TIME).MethodsRNA sequencing data and clinical information on 21 m6A regulators in 1,047 breast cancer samples were downloaded from The Cancer Genome Atlas (TCGA), and immune gene data were downloaded from InnateDB. Kaplan-Meier survival analysis was conducted with log-rank test using the survival package. An m6A-related immunogene-prognostic signature was then constructed, followed by immune infiltration and checkpoint analyses.ResultsA risk prognostic signature of m6A regulator-related immunogenes, including TOX, PSME2, MCTS1, NFKBIE, SH3BP4, RSPH1, JAK1, MLLT4, and PTGES3, was constructed. Furthermore, univariate and multivariate Cox regression analyses suggested that the tumor stage and risk score could be independent prognostic factors for patients with breast cancer. Immune infiltration analysis showed that the infiltration levels of T cells, memory B cells, activated NK cells, and macrophages between the high- and low-risk groups were significantly different. In addition, checkpoint analyses demonstrated that the levels of immune checkpoint genes, such as those of LAG3, PDCD1, CTLA4, and HAVCR2, were downregulated in the high-risk group compared to those in the low-risk group.ConclusionsOur findings suggest that the m6A regulator-related risk prognostic signature can predict the prognosis of breast cancer and that it is related to the immune microenvironment.
Project description:Radiation therapy is an important tool for malignant tumors, and its tolerance needs to be addressed. In recent years, several studies have shown that regulators of aberrant m6A methylation play an important role in the formation, development and invasion and metastasis of tumors. A large number of studies have confirmed aberrant m6A methylation as a new target for tumour therapy, but research on whether it can play a role in tumor sensitivity to radiotherapy has not been extensive and thorough enough. Recent studies have shown that all three major enzymes of m6A methylation have significant roles in radioresistance, and that the enzymes that play a role differ in different tumor types and by different mechanisms, including regulating tumor cell stemness, affecting DNA damage and repair, and controlling the cell cycle. Therefore, elucidating the mechanisms of m6A methylation in the radiotherapy of malignant tumors is essential to counteract radioresistance, improve the efficacy of radiotherapy, and even propose targeted treatment plans for specific tumors. The latest research progress on m6A methylation and radioresistance is reviewed in this article.
Project description:Background: N6-methyladenosine (m6A) modification is a part of epigenetic research that has gained increasing attention in recent years. m6A modification is widely involved in many biological behaviors of intracellular RNA by regulating mRNA, thus affecting disease progression and tumor occurrence. However, the effects of m6A modification on immune cell infiltration of the tumor microenvironment (TME) are uncertain in stomach adenocarcinoma (STAD). Methods: The Cancer Genome Map (TCGA) database was used to download transcriptome data, clinicopathological data, and survival data for m6A-regulated genes in 433 STAD tissues that meet the requirements of this study. GSE84437 data were obtained from the Gene Expression Omnibus (GEO) database. The correlation between 23 m6A regulated genes was analyzed using R software. Sample clustering analysis was carried out on the genes of the m6A regulatory factor, and survival analysis and differentiation comparison were made for patients in clustering grouping. Then, the Gene Set Enrichment Analysis (GSEA), the single-sample GSEA (ssGSEA), and other methods were conducted to assess the correlation among m6A modification patterns, TME cell infiltration characteristics, and immune infiltration markers. The m6A modification pattern of individual tumors was quantitatively evaluated using the m6A score scheme of the principal component analysis (PCA). Results: From the TCGA database, 94/433 (21.71%) samples were somatic cell mutations, and ZC3H13 mutations are the most common. Based on the consensus, matrix k-3 is an optimal clustering stability value to identify three different clusters. Three types of m6A methylation modification patterns were significantly different in immune infiltration. Thus, 1028 differentially expressed genes (DEGs) were identified. The survival analysis of the m6A score found that patients in the high m6A score group had a better prognosis than those in the low m6A score group. Further analysis of the survival curve combining tumor mutation burden (TMB) and m6A scores revealed that patients had a significantly lower prognosis in the low tumor mutant group and the low m6A score group (p = 0.003). The results showed that PD-L1 was significantly higher in the high m6A score group than in the low score group (p < 2.22e-16). The high-frequency microsatellite instability (MSI-H) subtype score was significantly different from the other two groups. Conclusions: This study systematically evaluated the modification patterns of 23 m6A regulatory factors in STAD. The m6A modification pattern may be a critical factor leading to inhibitory changes and heterogeneity in TME. This elucidated the TME infiltration characteristics in patients with STAD through the evaluation of the m6A modification pattern.
Project description:N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the m6A epitranscriptome. Compared to existing databases, m6A-Atlas features a high-confidence collection of 442 162 reliable m6A sites identified from seven base-resolution technologies and the quantitative (rather than binary) epitranscriptome profiles estimated from 1363 high-throughput sequencing samples. It also offers novel features, such as; the conservation of m6A sites among seven vertebrate species (including human, mouse and chimp), the m6A epitranscriptomes of 10 virus species (including HIV, KSHV and DENV), the putative biological functions of individual m6A sites predicted from epitranscriptome data, and the potential pathogenesis of m6A sites inferred from disease-associated genetic mutations that can directly destroy m6A directing sequence motifs. A user-friendly graphical user interface was constructed to support the query, visualization and sharing of the m6A epitranscriptomes annotated with sites specifying their interaction with post-transcriptional machinery (RBP-binding, microRNA interaction and splicing sites) and interactively display the landscape of multiple RNA modifications. These resources provide fresh opportunities for unraveling the m6A epitranscriptomes. m6A-Atlas is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/atlas.
Project description:BackgroundVulvar squamous cell carcinoma (VSCC) is an uncommon gynecologic malignancy but with an increasing incidence in recent years. Etiologically, VSCC is classified into two subtypes: HPV-dependent and HPV-independent. Localized VSCC is treated surgically and/or with radiation therapy, but for advanced, metastatic or recurrent disease, therapeutic options are still limited. N6-methyladenosine (m6A) is the most prevalent post-transcriptional messenger RNA (mRNA) modification and involved in many physiological processes. The group of m6A proteins can be further divided into: 'writers' (METTL3, METTL4, METTL14, WTAP, KIAA1429), 'erasers' (FTO, ALKBH5), and 'readers' (HNRNPA2B1, HNRNPC, YTHDC1, YTHDF1-3). Dysregulated m6A modification is implicated in carcinogenesis, progression, metastatic spread, and drug resistance across various cancer entities. Up to date, however, only little is known regarding the role of m6A in VSCC.MethodsHere, we comprehensively investigated protein expression levels of a diverse set of m6A writers, readers and erasers by applying immunohistochemical staining in 126 patients with primary VSCC.ResultsIn the entire study cohort, dominated by HPV-independent tumors, m6A protein expression was not associated with clinical outcome. However, we identified enhanced protein expression levels of the 'writers' METTL3, METTL14 and the 'reader' YTHDC1 as poor prognostic markers in the 23 patients with HPV-dependent VSCC.ConclusionOur study suggests dysregulated m6A modification in HPV-associated VSCC.
Project description:Background: Lung adenocarcinoma (LUAD) is the major subtype of lung cancer and is associated with very high mortality. Emerging studies have shown that N6-methyladenosine (m6A)-related long non-coding (lnc) RNAs play crucial roles in tumor prognosis and the tumor immune microenvironment (TME). We aimed to explore the expression patterns of different m6A-related lncRNAs concerning patient prognosis and construct an m6A-related lncRNA prognostic model for LUAD. Methods: The prognostic value of m6A-related lncRNAs was investigated in LUAD samples from The Cancer Genome Atlas (TCGA). Potential prognostic m6A-related lncRNAs were selected by Pearson's correlation and univariate Cox regression analysis. Patients were divided into clusters using principal component analysis and the m6A-related lncRNA prognostic signature was calculated using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Results: Based on 91 prognostic m6A-related lncRNAs, we identified two m6A-related-lncRNA pattern clusters with different overall survival (OS) and different TMEs. We subsequently verified our findings multidimensionally by constructing a 13 m6A-related lncRNA prognostic signature (m6A-LPS) to calculate the risk score, which was robust in different subgroups. The receiver operating characteristic (ROC) curves and concordance index demonstrated that m6A-LPS harbored a promising ability to predict OS in TCGA data set and independent GSE11969 cohort. The risk score was also related to OS, TME, and clinical stage, and the risk score calculated by our model was also identified as independent prognostic predictive factors for LUAD patients after adjustment for age, smoking, gender, and stage. Enrichment analysis indicated that malignancy and drug resistance-associated pathways were more common in cluster2 (LUAD-unfavorable m6A-LPS). Furthermore, the results indicated that the signaling pathway enriched by the target gene of 13 m6A-related lncRNAs may be associated with metastasis and progression of cancer according to current studies. Conclusion: The current results indicated that different m6A-related-lncRNA patterns could affect OS and TME in patients with LUAD, and the prognostic signature based on 13 m6A-related lncRNAs may help to predict the prognosis in LUAD patients.
Project description:BackgroundN6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal roles in gastric cancer (GC) progression. The emergence of immunotherapy in GC has created a paradigm shift in the approaches of treatment, whereas there is significant heterogeneity with regard to degree of treatment responses, which results from the variability of tumor immune microenvironment (TIME). How the interplay between m6A and lncRNAs enrolling in the shaping of TIME remains unclear.MethodsThe RNA sequencing and clinical data of GC patients were collected from TCGA database. Pearson correlation test and univariate Cox analysis were used to screen out m6A-related lncRNAs. Consensus clustering method was implemented to classify GC patients into two clusters. Survival analysis, the infiltration level of immune cells, Gene set enrichment analysis (GSEA) and the mutation profiles were analyzed and compared between two clusters. A competing endogenous RNA (ceRNA) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied for the identification of pathways in which m6A-related lncRNAs enriched. Then least absolute shrinkage and selection operator (LASSO) COX regression was implemented to select pivotal lncRNAs, and risk model was constructed accordingly. The prognosis value of the risk model was explored. In addition, the response to immune checkpoint inhibitors (ICIs) therapy were compared between different risk groups. Finally, we performed qRT-PCR to detect expression patterns of the selected lncRNAs in the 35 tumor tissues and their paired adjacent normal tissues, and validated the prognostic value of risk model in our cohort (N = 35).ResultsThe expression profiles of 15 lncRNAs were included to cluster patients into 2 subtypes. Cluster1 with worse prognosis harbored higher immune score, stromal score, ESTIMATE score and lower mutation rates of the genes. Different immune cell infiltration patterns were also displayed between the two clusters. GSEA showed that cluster1 preferentially enriched in tumor hallmarks and tumor-related biological pathways. KEGG pathway analysis found that the target mRNAs which m6A-related lncRNAs regulated by sponging miRNAs mainly enriched in vascular smooth muscle contraction, cAMP signaling pathway and cGMP-PKG signaling pathway. Next, eight lncRNAs were selected by LASSO regression algorithm to construct risk model. Patients in the high-risk group had poor prognoses, which were consistent in our cohort. As for predicting responses to ICIs therapy, patients from high-risk group were found to have lower tumor mutation burden (TMB) scores and account for large proportion in the Microsatellite Instability-Low (MSI-L) subtype. Moreover, patients had distinct immunophenoscores in different risk groups.ConclusionOur study revealed that the interplay between m6A modification and lncRNAs might have critical role in predicting GC prognosis, sculpting TIME landscape and predicting the responses to ICIs therapy.
Project description:BackgroundN6-methyladenosine (m6A) is the most frequent RNA modification in mammals, and its role in bladder cancer (BC) remains rarely revealed.ObjectiveTo predict the value of m6A-related genes in prognosis and immunity in BC.MethodsWe performed multiple omics analysis of 618 TCGA and GEO patients and used principal component analysis (PCA) to calculate the m6A score for BC patients.ResultsWe described the multiple omics status of 23 m6A methylation-related genes (MRGs), and four m6A clusters were identified, which showed significant differences in immune infiltration and biological pathways. Next, we intersected the differential genes among m6A clusters, and 11 survival-related genes were identified, which were used to calculate the m6A score for the patients. We found that the high-score (HS) group showed lower tumor mutation burden (TMB) and TP53 mutations and better prognosis than the low-score (LS) group. Lower immune infiltration, higher expression of PD-L1, PD-1, and CTLA4, and higher immune dysfunction and immune exclusion scores were identified in the LS group, suggesting a higher possibility of immune escape. Finally, the experimental verification shows that the m6A related genes, such as IGFBP1, plays an important role in the growth and metastasis of bladder cancer.ConclusionsThese findings revealed the important roles of m6A MRGs in predicting prognosis, TMB status, TP53 mutation, immune functions and immunotherapeutic response in BC.
Project description:PurposeGastric cancer (GC) is aggressive cancer with a high mortality rate worldwide. N6-methyladenosine (m6A) RNA methylation is related to tumorigenesis, which is dynamically regulated by m6A modulators ("writer," "eraser," and "reader"). We conducted a comprehensive analysis of the m6A genes of GC patients in TCGA datasets to identify the potential diagnostic biomarkers.Materials and methodsWe analyzed the expression profile of m6A genes in the TCGA cohort and constructed a diagnostic-m6A-score (DMS) by the LASSO-logistic model. In addition, by consensus cluster analysis, we identified two different subgroups of GC risk individuals by the expression profile of m6A modulators, revealing that YTHDF1's expression variation profile in GC diagnosis. We also performed RT-qPCR and WB verification in 17 pairs of GC specimens and paired adjacent non-tumor tissues and GC cell lines, and verified the expression trend of YTHDF1 in five GEO GC datasets. YTHDF1 expression and clinical features of GC patients were assessed by the UALCAN.ResultsThe DMS with high specificity and sensitivity (AUC = 0.986) is proven to distinguish cancer from normal controls better. Moreover, we found that the expression profile variation of YTHDF1 was significantly associated with the high-risk subtype of GC patients. RT-qPCR and Western blot results are consistent with silicon analysis, revealing that YTHDF1's potential oncogene role in GC tumor.ConclusionIn conclusion, we developed the m6A gene-based diagnostic signature for GC and found that YTHDF1 was significantly correlated with the high-risk subtype of GC patients, suggesting that YTHDF1 might be a potential target in GC early diagnosis.