Project description:AimPatients with HER2-positive (HER2+) metastatic breast cancer (mBC) develop brain metastases (BM) in up to 30% of cases. Treatment of patients with BM can consist of local treatment (surgery and/or radiotherapy) and/or systemic treatment. We undertook a systematic review and meta-analysis to determine the effect of different systemic therapies in patients with HER2+ mBC and BM.MethodsA systematic search was performed in the databases PubMed, Embase.com, Clarivate Analytics/Web of Science Core Collection and the Wiley/Cochrane Library. Eligible articles included prospective or retrospective studies reporting on the effect of systemic therapy on objective response rate (ORR) and/or median progression free survival (mPFS) in patients with HER2+ mBC and BM. The timeframe within the databases was from inception to 19 January 2022. Fixed-effects meta-analyses were used. Quality appraisal was performed using the ROBINS-I tool.ResultsFifty-one studies were included, involving 3118 patients. Most studies, which contained the largest patient numbers, but also often carried a moderate-serious risk of bias, investigated lapatinib and capecitabine (LC), trastuzumab-emtansine (T-DM1) or pyrotinib. The best quality data and/or highest ORR were described with tucatinib (combined with trastuzumab and capecitabine, TTC) and trastuzumab-deruxtecan (T-DXd). TTC demonstrated an ORR of 47.3% in patients with asymptomatic and/or active BM. T-DXd achieved a pooled ORR of 64% (95% CI 43-85%, I2 0%) in a heavily pretreated population with asymptomatic BM (3 studies, n = 96).ConclusionsThough our meta-analysis should be interpreted with caution due to the heterogeneity of included studies and a related serious risk of bias, this review provides a comprehensive overview of all currently available systemic treatment options. T-Dxd and TTC that appear to constitute the most effective systemic therapy in patients with HER2+ mBC and BM, while pyrotinib might be an option in Asian patients.
Project description:Radiotherapy and targeted therapy are essential treatments for patients with brain metastases from human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the combination of radiotherapy and targeted therapy still needs to be investigated, and neurotoxicity induced by radiotherapy for brain metastases has also become an important issue of clinical concern. It remained unclear how to achieve the balance of efficacy and toxicity with the application of new radiotherapy techniques and new targeted therapy drugs. This article reviews the benefits and potential risk of combining radiotherapy and targeted therapy for HER2-positive breast cancer with brain metastases.
Project description:The management of human epidermal growth factor receptor (HER2)-positive breast cancer has improved over the past decade. However, despite improvements in systemic control, a substantial proportion of patients with advanced HER2-positive breast cancer suffer from central nervous system metastases and even intracranial progression after aggressive local treatment. There is paucity of data and no consensus on the systemic therapies for patients with intracranial progression. This review discusses both local and systemic treatments for HER2-positive breast cancer with brain metastases with a special focus on the response of central nervous system metastases. A recommended practical treatment algorithm to guide physicians in selecting the most appropriate anti-HER2 therapy for their patients is suggested.
Project description:Brain metastases occur in up to 25-55% of patients with metastatic HER2-positive breast cancer. Standard treatment has high rates of recurrence or progression, limiting survival and quality of life in most patients. Temozolomide (TMZ) is known to penetrate the blood-brain barrier and is US FDA approved for treatment of glioblastoma. Our group has demonstrated that low doses of TMZ administered in a prophylactic, metronomic fashion can significantly prevent development of brain metastases in murine models of breast cancer. Based on these findings, we initiated a secondary-prevention clinical trial with oral TMZ given to HER2-positive breast cancer patients with brain metastases after recent local treatment in combination with T-DM1 for systemic control of disease. Primary end point is freedom from new brain metastases at 1 year. (NCT03190967).
Project description:Development of brain metastases can occur in up to 30-50% of patients with breast cancer, representing a significant impact on an individual patient in terms of survival and quality of life. Patients with HER2-positive breast cancer have an increased risk of developing brain metastases; however, screening for brain metastases is not currently recommended due to the lack of robust evidence to support survival benefit. In recent years, several novel anti-HER2 agents have led to significant improvements in the outcomes of HER2-positive metastatic breast cancer. Despite these advances, brain and leptomeningeal metastases from HER2-positive breast cancer remain a significant cause of morbidity and mortality, and their optimal management remains an unmet need. This review presents an update on the current and novel treatment strategies for patients with brain metastases from HER2-positive breast cancer and discusses the open questions in the field.
Project description:The management of patients with brain metastases from breast cancer continues to be a major clinical challenge. The standard initial therapeutic approach depends upon the size, location, and number of metastatic lesions and includes consideration of surgical resection, whole-brain radiotherapy, and stereotactic radiosurgery. As systemic therapies for control of extracranial disease improve, patients are surviving long enough to experience subsequent progression events in the brain. Therefore, there is an increasing need to identify both more effective initial treatments as well as to develop multiple lines of salvage treatments for patients with breast cancer brain metastases. This review summarises the clinical experience to date with respect to cytotoxic and targeted systemic therapies for the treatment of brain metastases, highlights ongoing and planned trials of novel approaches and identifies potential targets for future investigation.
Project description:Overexpression of the human epidermal growth factor 2 (HER2)/neu glycoprotein receptor in breast cancer is associated with increased risk of brain metastases, especially in patients with advanced disease. Improvements in the treatment of HER2-positive breast cancer has led to prolonged survival of patients with advanced disease, but the prevention and management of central nervous system metastases still poses unique clinical challenges given the associated morbidity and mortality of this site of disease. HER2-positive brain metastases are treated with surgery, radiation (stereotactic radiosurgery or whole brain radiotherapy), and systemic therapies, and are best managed by an experienced multidisciplinary team. The present article aims to provide an overview to our approach to treatment of HER2-positive brain metastases, including a review of agents with central nervous system activity, as well as management suggestions for several nuanced clinical scenarios.
Project description:BackgroundIn Asia, large-scale studies on anti-HER2 treatment in HER2-positive breast cancer patients with brain metastases are limited. We studied the treatment patterns of these patients in Asia to evaluate the impact of anti-HER2 treatment on the time to occurrence of brain metastases (TTBM) and survival after brain metastasis (BM).MethodsA retrospective study of HER2-positive breast cancer patients diagnosed with BM between January 2006 and December 2008 in six Asian countries was conducted. Demographics, tumour characteristics, treatment details, and events dates were collected from medical records.ResultsData from 280 patients were analysed. Before BM, 63% received anti-HER2 treatment. These patients had significantly longer TTBM than those without anti-HER2 treatment (median 33 vs 19 months; P<0.002). After BM, 93% received radiotherapy, 57% received chemotherapy, and 41% received anti-HER2 treatment (trastuzumab and/or lapatinib). Use of both anti-HER2 agents, primarily sequentially, after BM demonstrated the longest survival after BM and was associated with a significant survival benefit over no anti-HER2 treatment (median 26 vs 6 months; hazard ratio 0.37; 95% CI 0.19-0.72).ConclusionAnti-HER2 treatment before BM was associated with longer TTBM. Anti-HER2 treatment after BM was associated with a survival benefit, especially when both trastuzumab and lapatinib were utilised.
Project description:Approximately 20% of breast cancers (BC) overexpress human epidermal growth factor receptor 2 (HER2). This subtype of BC is a clinically and biologically heterogeneous disease that was associated with an increased risk for the development of systemic and brain metastases and poor overall survival before anti-HER2 therapies were developed. The standard of care was dual blockade with trastuzumab and pertuzumab as first-line followed by TDM-1 as second-line. However, with the advent of new HER2-targeted monoclonal antibodies, tyrosine kinase inhibitors and antibody- drug conjugates, the clinical outcomes of patients with HER2-positive BC have changed dramatically in recent years, leading to a paradigm shift in the treatment of the disease. Notably, the development of new-generation ADCs has led to unprecedented results compared with T-DM1, currently establishing trastuzumab deruxtecan as a new standard of care in second-line. Despite the widespread availability of HER2-targeted therapies, patients with HER2-positive BC continue to face the challenges of disease progression, treatment resistance, and brain metastases. Response rate and overall life expectancy decrease with each additional line of treatment, and tumor heterogeneity remains an issue. In this review, we update the new-targeted therapeutic options for HER2-positive BC and highlight the future perspectives of treatment in this setting.