Project description:Methyltransferase-like 3 (METTL3) and METTL14 form a heterodimeric complex that catalyzes the most abundant internal mRNA modification, N6-methyladenosine (m6A). METTL3 is the catalytic subunit that binds the co-substrate S-adenosyl methionine (SAM), while METTL14 is involved in mRNA binding. The m6A modification provides post-transcriptional level control over gene expression as it affects almost all stages of the mRNA life cycle, including splicing, nuclear export, translation, and decay. There is increasing evidence for an oncogenic role of METTL3 in acute myeloid leukemia. Here, we use structural and dynamic details of the catalytic subunit METTL3 for developing small-molecule inhibitors that compete with SAM. Starting from a hit identified by high-throughput docking, protein crystallography and molecular dynamics simulations were employed to guide the optimization of inhibitory activity. The potency was successfully improved by 8000-fold as measured by a homogeneous time-resolved fluorescence assay. The optimized compound is selective against the off-targets RNA methyltransferases METTL1 and METTL16.
Project description:Hepatocellular carcinoma (HCC) has poor prognosis and is usually diagnosed only at an advanced stage. Identification of novel biomarkers is critical to early diagnosis and better prognosis for HCC patients. N6-methyladenosine (m6A) RNA methylation regulators play important roles in the development of many tumors. However, the m6A writer complex, a key executor of m6A methylation modification, has not been independently investigated, and its specific bioinformatics analysis has not yet been performed in HCC. In this study, we used multiple public databases to evaluate the diagnostic, therapeutic, and prognostic value of the m6A writers in HCC. The results showed that expression levels of METTL3, VIRMA and CBLL1 were significantly increased, while expression levels of METTL14 and ZC3H13 were significantly decreased in HCC, which was closely related to clinicopathological factors, such as tumor stage and prognosis. Bioinformatics further explored the possible underlying mechanisms by which the m6A writer complex are involved in activation of tumor-promoting pathways and/or inhibition of tumor-suppressing pathways, including apoptosis, cell cycle, DNA damage response and EMT. Furthermore, we showed that the m6A writer complex is correlated with immune cell infiltration and immunoregulator expression in HCC. In conclusion, the m6A writer complex may represent a promising biomarker and target that can guide targeted therapy or immunotherapy for HCC patients.
Project description:N6-methyladenosine (m6 A) and its regulatory proteins have been associated with tumorigenesis in several cancer types. However, knowledge on the mechanistic network related to m6 A in bladder cancer (BlCa) is rather limited, requiring further investigation of its functional role. We aimed to uncover the biological role of m6 A and related proteins in BlCa and understand how this influences tumor aggressiveness. N6-adenosine-methyltransferase catalytic subunit (METTL3), N6-adenosine-methyltransferase noncatalytic subunit (METTL14), protein virilizer homolog (VIRMA), and RNA demethylase ALKBH5 (ALKBH5) had significantly lower expression levels in BlCa compared to that in normal urothelium. METTL14 knockdown led to disruption of the remaining methyltransferase complex and a decrease in m6 A abundance, as well as overall reduced tumor aggressiveness (decreased cell invasion and migration capacity and increased apoptosis). Furthermore, in vivo, METTL14 knockdown caused tumor size reduction. Collectively, we propose methyltransferase METTL14 as a key component for m6 A RNA deposit and that it is closely related to BlCa progression, playing an important role in tumor aggressiveness. These data contribute to a better understanding of the m6 A writer complex, which might constitute an appealing therapeutic target.
Project description:Internal modification of RNAs with N6-methyladenosine (m6A) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second m6A writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding. When presented with a random pool of RNAs, METTL16 selects for methylation-structured RNAs where the critical adenosine is present in a bulge. Mouse 16-cell embryos lacking Mettl16 display reduced mRNA levels of its methylation target, the SAM synthetase Mat2a. The consequence is massive transcriptome dysregulation in ?64-cell blastocysts that are unfit for further development. This highlights the role of an m6A RNA methyltransferase in facilitating early development via regulation of SAM availability.
Project description:The employment of the new Schiff base ligand 2-[(4-chloro-2-hydroxybenzylideneamino)methyl]phenol (H2L) bearing O2N donors for the preparation of a novel Co6 cluster is reported. The hexanuclear cobalt complex, namely, di-μ2-acetatotetrakis{μ2-2-[(4-chloro-2-oxidobenzylideneamino)methyl]phenolato}tetra-μ3-methanolato-tetracobalt(II)dicobalt(III), [CoII4CoIII2(C14H10ClNO2)4(CH3COO)2(CH3O)4], was obtained using Co(CH3COO)2·4H2O and H2L as starting materials in MeOH under solvothermal conditions. The six metal ions are linked together by the μ3-O atoms of four deprotonated MeOH molecules, two CH3COO- units and six phenolate O atoms of four L2- ligands to form a defect disk-shaped topology. DC magnetic susceptibility investigations revealed the existence of antiferromagnetic interactions in the Co6 cluster.
Project description:Aberrant transcripts expression of the m6A methyltransferase complex (MTC) is widely found across human cancers, suggesting a dysregulated signaling cascade which integrates m6A epitranscriptome to drive tumorigenesis. However, the responsible transcriptional machinery directing the expression of distinct MTC subunits remains unclear. Here, we identified an unappreciated interplay between the histone acetyl-lysine reader BRD4 and the m6A writer complex across human cancers. BRD4 directly stimulates transcripts expression of seven MTC subunits, allowing the maintenance of the nuclear writer complex integrity. Upon BET inhibition, this BRD4-MTC signaling cascade accounts for global m6A reduction and the subsequent dynamic alteration of BRD4-dependent transcriptome, resulting in impaired DNA damage response that involves activation of homologous recombination (HR) repair and repression of apoptosis. We further demonstrated that the combined synergy upon BET/PARP inhibition largely relies on disrupted m6A modification of HR and apoptotic genes, counteracting PARP inhibitor (PARPi) resistance in patient-derived xenograft models. Our study revealed a widespread active cross-talk between BRD4-dependent epigenetic and MTC-mediated epitranscriptomic networks, which provides a unique therapeutic vulnerability that can be leveraged in combined DNA repair-targeted therapy.
Project description:N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.
Project description:BackgroundCovalent RNA modifications, such as N-6-methyladenosine (m6A), have been associated with various biological processes, but their role in cancer remains largely unexplored. m6A dynamics depends on specific enzymes whose deregulation may also impact in tumorigenesis. Herein, we assessed the differential abundance of m6A, its writer VIRMA and its reader YTHDF3, in testicular germ cell tumors (TGCTs), looking for clinicopathological correlates.MethodsIn silico analysis of TCGA data disclosed altered expression of VIRMA (52%) and YTHDF3 (48%), prompting subsequent validation. Formalin-fixed paraffin-embedded tissues from 122 TGCTs (2005-2016) were selected. RNA extraction, cDNA synthesis and real-time qPCR (Taqman assays) for VIRMA and YTHDF3 were performed, as well as immunohistochemistry for VIRMA, YTHDF3 and m6A, for staining intensity assessment. Associations between categorical variables were assessed using Chi square and Fisher's exact test. Distribution of continuous variables between groups was compared using the nonparametric Mann-Whitney and Kruskal-Wallis tests. Biomarker performance was assessed through receiver operating characteristics (ROC) curve construction and a cut-off was established by Youden's index method. Statistical significance was set at p < 0.05.ResultsIn our cohort, VIRMA and YTHDF3 mRNA expression levels differed among TGCT subtypes, with Seminomas (SEs) depicting higher levels than Non-Seminomatous tumors (NSTs) (p < 0.01 for both). A positive correlation was found between VIRMA and YTHDF3 expression levels. VIRMA discriminated SEs from NSTs with AUC = 0.85 (Sensitivity 77.3%, Specificity 81.1%, PPV 71.6%, NPV 85.3%, Accuracy 79.7%). Immunohistochemistry paralleled transcript findings, as patients with strong m6A immunostaining intensity depicted significantly higher VIRMA mRNA expression levels and stronger VIRMA immunoexpression intensity (p < 0.001 and p < 0.01, respectively).ConclusionAbundance of m6A and expression of VIRMA/YTHDF3 were different among TGCT subtypes, with higher levels in SEs, suggesting a contribution to SE phenotype maintenance. VIRMA and YTHDF3 might cooperate in m6A establishment in TGCTs, and their transcript levels accurately discriminate between SEs and NSTs, constituting novel candidate biomarkers for patient management.
Project description:The nature of Fermi surface defines the physical properties of conductors and many physical phenomena can be traced to its shape. Although the recent discovery of a current-dependent nonlinear magnetoresistance in spin-polarized non-magnetic materials has attracted considerable attention in spintronics, correlations between this phenomenon and the underlying fermiology remain unexplored. Here, we report the observation of nonlinear magnetoresistance at room temperature in a semimetal WTe2, with an interesting temperature-driven inversion. Theoretical calculations reproduce the nonlinear transport measurements and allow us to attribute the inversion to temperature-induced changes in Fermi surface convexity. We also report a large anisotropy of nonlinear magnetoresistance in WTe2, due to its low symmetry of Fermi surfaces. The good agreement between experiments and theoretical modeling reveals the critical role of Fermi surface topology and convexity on the nonlinear magneto-response. These results lay a new path to explore ramifications of distinct fermiology for nonlinear transport in condensed-matter.