Unknown

Dataset Information

0

Ipconazole Disrupts Mitochondrial Homeostasis and Alters GABAergic Neuronal Development in Zebrafish.


ABSTRACT: Ipconazole, a demethylation inhibitor of fungal ergosterol biosynthesis, is widely used in modern agriculture for foliar and seed treatment, and is authorized for use in livestock feed. Waste from ipconazole treatment enters rivers and groundwater through disposal and rain, posing potential toxicity to humans and other organisms. Its metabolites remain stable under standard hydrolysis conditions; however, their neurodevelopmental toxicity is unknown. We investigated the potential neurodevelopmental toxicity of ipconazole pesticides in zebrafish (Danio rerio). Our behavioral monitoring demonstrated that the locomotive activity of ipconazole-exposed zebrafish larvae was reduced during early development, even when morphological abnormalities were undetected. Molecular profiling demonstrated that the mitochondrial-specific antioxidants, superoxide dismutases 1 and 2, and the genes essential for mitochondrial genome maintenance and functions were specifically reduced in ipconazole-treated (0.02 μg/mL) embryos, suggesting underlying ipconazole-driven oxidative stress. Consistently, ipconazole treatment substantially reduced hsp70 expression and increased ERK1/2 phosphorylation in a dose-dependent manner. Interrupted gad1b expression confirmed that GABAergic inhibitory neurons were dysregulated at 0.02 μg/mL ipconazole, whereas glutamatergic excitatory and dopaminergic neurons remained unaffected, resulting in an uncoordinated neural network. Additionally, ipconazole-treated (2 μg/mL) embryos exhibited caspase-independent cell death. This suggests that ipconazole has the potential to alter neurodevelopment by dysregulating mitochondrial homeostasis.

SUBMITTER: Lee G 

PROVIDER: S-EPMC9820214 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ipconazole Disrupts Mitochondrial Homeostasis and Alters GABAergic Neuronal Development in Zebrafish.

Lee Giyoung G   Banik Amit A   Eum Juneyong J   Hwang Byung Joon BJ   Kwon Seung-Hae SH   Kee Yun Y  

International journal of molecular sciences 20221228 1


Ipconazole, a demethylation inhibitor of fungal ergosterol biosynthesis, is widely used in modern agriculture for foliar and seed treatment, and is authorized for use in livestock feed. Waste from ipconazole treatment enters rivers and groundwater through disposal and rain, posing potential toxicity to humans and other organisms. Its metabolites remain stable under standard hydrolysis conditions; however, their neurodevelopmental toxicity is unknown. We investigated the potential neurodevelopmen  ...[more]

Similar Datasets

| S-EPMC9668168 | biostudies-literature
| S-EPMC8620594 | biostudies-literature
| S-EPMC8852258 | biostudies-literature
| S-EPMC10475106 | biostudies-literature
| S-EPMC9314546 | biostudies-literature
| S-EPMC1166590 | biostudies-literature
| S-EPMC10721858 | biostudies-literature
| S-EPMC10496494 | biostudies-literature
| S-EPMC3325105 | biostudies-literature
| S-EPMC6610133 | biostudies-literature