Unknown

Dataset Information

0

Glycolysis regulates KRAS plasma membrane localization and function through defined glycosphingolipids.


ABSTRACT: Oncogenic KRAS expression generates a metabolic dependency on aerobic glycolysis, known as the Warburg effect. We report an effect of increased glycolytic flux that feeds into glycosphingolipid biosynthesis and is directly linked to KRAS oncogenic function. High resolution imaging and genetic approaches show that a defined subset of outer leaflet glycosphingolipids, including GM3 and SM4, is required to maintain KRAS plasma membrane localization, with GM3 engaging in cross-bilayer coupling to maintain inner leaflet phosphatidylserine content. Thus, glycolysis is critical for KRAS plasma membrane localization and nanoscale spatial organization. Reciprocally oncogenic KRAS selectively upregulates cellular content of these same glycosphingolipids, whose depletion in turn abrogates KRAS oncogenesis in pancreatic cancer models. Our findings expand the role of the Warburg effect beyond ATP generation and biomass building to high-level regulation of KRAS function. The positive feedforward loop between oncogenic KRAS signaling and glycosphingolipid synthesis represents a vulnerability with therapeutic potential.

SUBMITTER: Liu J 

PROVIDER: S-EPMC9884228 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glycolysis regulates KRAS plasma membrane localization and function through defined glycosphingolipids.

Liu Junchen J   van der Hoeven Ransome R   van der Hoeven Ransome R   Kattan Walaa E WE   Chang Jeffrey T JT   Montufar-Solis Dina D   Chen Wei W   Wong Maurice M   Zhou Yong Y   Lebrilla Carlito B CB   Hancock John F JF  

Nature communications 20230128 1


Oncogenic KRAS expression generates a metabolic dependency on aerobic glycolysis, known as the Warburg effect. We report an effect of increased glycolytic flux that feeds into glycosphingolipid biosynthesis and is directly linked to KRAS oncogenic function. High resolution imaging and genetic approaches show that a defined subset of outer leaflet glycosphingolipids, including GM3 and SM4, is required to maintain KRAS plasma membrane localization, with GM3 engaging in cross-bilayer coupling to ma  ...[more]

Similar Datasets

| S-EPMC6703705 | biostudies-literature
| S-EPMC7604625 | biostudies-literature
| S-EPMC2937948 | biostudies-literature
| S-EPMC6709719 | biostudies-literature
| S-SCDT-EMBOJ-2019-101767 | biostudies-other
| S-EPMC6938022 | biostudies-literature
| S-EPMC10084885 | biostudies-literature
| S-EPMC9500237 | biostudies-literature
| S-EPMC4072583 | biostudies-literature
| S-EPMC4197089 | biostudies-literature