Project description:Indium oxide (In2O3) is a promising catalyst for selective CH3OH synthesis from CO2 but displays insufficient activity at low reaction temperatures. By screening a range of promoters (Co, Ni, Cu, and Pd) in combination with In2O3 using flame spray pyrolysis (FSP) synthesis, Ni is identified as the most suitable first-row transition-metal promoter with similar performance as Pd-In2O3. NiO-In2O3 was optimized by varying the Ni/In ratio using FSP. The resulting catalysts including In2O3 and NiO end members have similar high specific surface areas and morphology. The main products of CO2 hydrogenation are CH3OH and CO with CH4 being only observed at high NiO loading (≥75 wt %). The highest CH3OH rate (∼0.25 gMeOH/(gcat h), 250 °C, and 30 bar) is obtained for a NiO loading of 6 wt %. Characterization of the as-prepared catalysts reveals a strong interaction between Ni cations and In2O3 at low NiO loading (≤6 wt %). H2-TPR points to a higher surface density of oxygen vacancy (Ov) due to Ni substitution. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electron paramagnetic resonance analysis of the used catalysts suggest that Ni cations can be reduced to Ni as single atoms and very small clusters during CO2 hydrogenation. Supportive density functional theory calculations indicate that Ni promotion of CH3OH synthesis from CO2 is mainly due to low-barrier H2 dissociation on the reduced Ni surface species, facilitating hydrogenation of adsorbed CO2 on Ov.
Project description:The preparation of methanol chemicals through CO2 and H2 gas is a positive measure to achieve carbon neutrality. However, developing catalysts with high selectivity remains a challenge due to the irreversible side reaction of reverse water gas shift (RWGS), and the low-temperature characteristics of CO2 hydrogenation to methanol. In-plane sulfur vacancies of MoS2 can be the catalytic active sites for CH3OH formation, but the edge vacancies are more inclined to the occurrence of methane. Therefore, MoS2 and a series of MoS2/Nix and MoS2/Cox catalysts doped with different amounts are prepared by a hydrothermal method. A variety of microscopic characterizations indicate that Ni and Co doping can form NiS2 and CoS2, the existence of these substances can prevent CO2 and H2 from contacting the edge S vacancies of MoS2, and the selectivity of the main product is improved. DFT calculation illustrates that the larger range of orbital hybridization between Ni and MoS2 leads to CO2 activation and the active hydrogen is more prone to surface migration. Under optimized preparation conditions, MoS2/Ni0.2 exhibits relatively good methanol selectivity. Therefore, this strategy of improving methanol selectivity through metal doping has reference significance for the subsequent research and development of such catalysts.
Project description:Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Project description:Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 μmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 μmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10-15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of "Sn" and "In" helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.
Project description:Despite the large number of studies on the catalytic hydrogenation of CO2 to CO and hydrocarbons by metal nanoparticles, the nature of the active sites and the reaction mechanism have remained unresolved. This hampers the development of effective catalysts relevant to energy storage. By investigating the structure sensitivity of CO2 hydrogenation on a set of silica-supported Ni nanoparticle catalysts (2-12 nm), we found that the active sites responsible for the conversion of CO2 to CO are different from those for the subsequent hydrogenation of CO to CH4. While the former reaction step is weakly dependent on the nanoparticle size, the latter is strongly structure sensitive with particles below 5 nm losing their methanation activity. Operando X-ray diffraction and X-ray absorption spectroscopy results showed that significant oxidation or restructuring, which could be responsible for the observed differences in CO2 hydrogenation rates, was absent. Instead, the decreased methanation activity and the related higher CO selectivity on small nanoparticles was linked to a lower availability of step edges that are active for CO dissociation. Operando infrared spectroscopy coupled with (isotopic) transient experiments revealed the dynamics of surface species on the Ni surface during CO2 hydrogenation and demonstrated that direct dissociation of CO2 to CO is followed by the conversion of strongly bonded carbonyls to CH4. These findings provide essential insights into the much debated structure sensitivity of CO2 hydrogenation reactions and are key for the knowledge-driven design of highly active and selective catalysts.
Project description:The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.
Project description:Although chemical promotion led to essential improvements in Cu-based catalysts for CO2 hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In2O3/CeO2 and Cu/In2O3/ZrO2 catalysts by coating the nanoparticles with a mesoporous SiO2 shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal-metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.
Project description:Despite the importance of CO2 methanation for eco-friendly carbon-neutral fuel recycling, the current technologies, relying on catalytic hydrogenation over metal-based catalysts, face technological and economical limitations. Herein, we employ the steam hydrogenation capability of proton conductors to achieve collateral CO2 methanation over the Ni/BaZr0.85Y0.15O3-δ catalyst, which is shown to outperform its conventional Ni/Al2O3 counterpart in terms of CH4 yield (8% higher) and long-term stability (3% higher for 150 h) at 400 °C while exhibiting a CH4 selectivity above 98%. Moreover, infrared and X-ray photoelectron spectroscopy analyses reveal the appearance of distinct mobile proton-related OH bands during the methanation reaction.
Project description:The growing demand for new energy sources governs the intensive research into CO2 hydrogenation to methanol, a valuable liquid fuel. Recently, indium-based catalysts have shown promise in this reaction, but they are plagued by shortcomings such as structural instability during the reaction and low selectivity. Here, we report a new strategy of controlling the selectivity and stability of bimetallic magnetically recoverable indium-based catalysts deposited onto a solid support. This was accomplished by the introduction of a structural promoter: a branched pyridylphenylene polymer (PPP). The selectivity of methanol formation for this catalyst reached 98.5%, while in the absence of PPP, the catalysts produced a large amount of methane, and the selectivity was about 70.2%. The methanol production rate was higher by a factor of twelve compared to that of a commercial Cu-based catalyst. Along with tuning selectivity, PPP allowed the catalyst to maintain a high stability, enhancing the CO2 sorption capacity and the protection of In against sintering and over-reduction. A careful evaluation of the structure-activity relationships allowed us to balance the catalyst composition with a high level of structural control, providing synergy between the support, magnetic constituent, catalytic species, and the stabilizing polymer layer. We also uncovered the role of each component in the ultimate methanol activity and selectivity.
Project description:The reaction pathways on supported catalysts can be tuned by optimizing the catalyst structures, which helps the development of efficient catalysts. Such design is particularly desired for CO2 hydrogenation, which is characterized by complex pathways and multiple products. Here, we report an investigation of supported cobalt, which is known for its hydrocarbon production and ability to turn into a selective catalyst for methanol synthesis in CO2 hydrogenation which exhibits good activity and stability. The crucial technique is to use the silica, acting as a support and ligand, to modify the cobalt species via Co‒O‒SiOn linkages, which favor the reactivity of spectroscopically identified *CH3O intermediates, that more readily undergo hydrogenation to methanol than the C‒O dissociation associated with hydrocarbon formation. Cobalt catalysts in this class offer appealing opportunities for optimizing selectivity in CO2 hydrogenation and producing high-grade methanol. By identifying this function of silica, we provide support for rationally controlling these reaction pathways.