Project description:To circumvent protecting groups, the site-selective modification of unprotected glycosides is intensively studied. We show that site-selective oxidation, followed by treatment of the corresponding trityl hydrazone with tert-butyl hypochlorite and a H atom donor provides an effective way to introduce a chloride substituent in a variety of mono- and disaccharides. The stereoselectivity can be steered, and a new geminal dichlorination reaction is described as well. This strategy challenges existing methods that lead to overchlorination.
Project description:Here we present the discovery and development of a highly selective aromatic C-H amination reaction. This electrochemical strategy involves a cathodic reduction process that generates highly electrophilic dicationic N-centered radicals that can efficiently engage in aromatic C-H functionalization and channel the regioselectivity of the aromatic substitution. The nitrogen-radical cation-pi interaction with arenes used throughout nature leads to a charge transfer mechanism, with subsequent aromatic C-N bond formation. This electrochemical process generates aryl DABCOnium salts in excellent yields and regioselectivities (single regioisomer in most cases). The scope of the reaction on arene is broad where various functionalities such as aryl halides (bromides, chlorides, fluorides), carbonyls (ketones, esters, imides), sulfonamides, and heteroarenes (pyridines, bipyridines, and terpyridines) are well tolerated. Moreover, we disclose the synthetic utility of the aryl DABCOnium salt adducts leading to the direct access of diverse aryl piperazines and the chemoselective cleavage of the exocyclic aryl C(sp2)-N bond over electrophilic C(sp3)-N+ bonds via photoredox catalysis to afford synthetically useful aryl radicals that can engage in aryl C-C and C-P bond formation.
Project description:Site-selective oxidation of vicinal bis(boronates) is accomplished through the use of trimethylamine N-oxide in 1-butanol solvent. The reaction occurs with good efficiency and selectivity across a range of substrates, providing 2-hydro-1-boronic esters which are shown to be versatile intermediates in the synthesis of chiral building blocks.
Project description:Herein, we first report an electrochemical methodology for the site-selective alkylation of azobenzenes with (thio)xanthenes in the absence of any transition metal catalyst or external oxidant. A variety of groups are compatible with this electrochemical alkylation, which furnishes the products in moderate to good yields.
Project description:Directly introducing a beneficial functional group into biomolecules under mild, clean and easy-to-handle conditions is of great importance in the field of chemical biology and pharmacology. Herein, we described an electrochemical strategy to perform the bioconjugation of tyrosine residues with phenothiazine derivatives in a rapid and simple manner. In this electrochemical system, various polypeptides and proteins were successfully labelled with excellent site- and chemo-selectivity, and metals, oxidants or additives were also avoided.
Project description:Carbohydrates are synthetically challenging molecules with vital biological roles in all living systems. Selective synthesis and functionalization of carbohydrates provide tremendous opportunities to improve our understanding on the biological functions of this fundamentally important class of molecules. However, selective functionalization of seemingly identical hydroxyl groups in carbohydrates remains a long-standing challenge in chemical synthesis. We herein describe a practical and predictable method for the site-selective and stereoselective alkylation of carbohydrate hydroxyl groups via Rh(II)-catalyzed insertion of metal carbenoid intermediates. This represents one of the mildest alkylation methods for the systematic modification of carbohydrates. Density functional theory (DFT) calculations suggest that the site selectivity is determined in the Rh(II)-carbenoid insertion step, which prefers insertion into hydroxyl groups with an adjacent axial substituent. The subsequent intramolecular enolate protonation determines the unexpected high stereoselectivity. The most prevalent trans-1,2-diols in various pyranoses can be systematically and predictably differentiated based on the model derived from DFT calculations. We also demonstrated that the selective O-alkylation method could significantly improve the efficiency and stereoselectivity of glycosylation reactions. The alkyl groups introduced to carbohydrates by OH insertion reaction can serve as functional groups, protecting groups, and directing groups.
Project description:To investigate selectivity of mRNA oxidation, total RNA and oxidized RNA isolated from Neuro 2a cells before and after H2O2 treatment were employed for microarray analysis. It was found that selective oxidation of mRNA already occurs under normal culture conditions but was increased by H2O2, especially in a subset of mRNAs related to certain functions. Moreover, mRNA oxidation level is also related to its abundance or stability (half-life time). This shows for the first time that mRNA oxidation is associated with RNA homeostasis including function, stability and abundance depending on cellular redox status in a genome-wide scale. Neuro 2a cells received hydrogen peroxide treatment or no treatment as a control. Samples were applied for RNA extraction and ARP labeling, which could bind with apurinic/apyrimidinic sites, and then a pull-down process to isolate oxidized RNA. Total RNA and oxidized RNA were used for subsequent transcriptomic profiling. 4 types of samples were analyzed: Basal-total: untreated N2a cells labeled with ARP, but not processed for the pull-down assay. Ox-total: hydrogen peroxide-treated N2a cells labeled with ARP, but not processed for the pull-down assay. Basal-ARP: untreated N2a cells labeled with ARP, and processed for the pull-down assay. ARP-derivatized RNA, which is also oxidized RNA, was concentrated and used for the microarray analysis. Ox-ARP: hydrogen peroxide-treated N2a cells labeled with ARP, and processed for the pull-down assay. ARP-derivatized RNA, which is also oxidized RNA, was concentrated and used for the microarray analysis.
Project description:The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.
Project description:To investigate selectivity of mRNA oxidation, total RNA and oxidized RNA isolated from Neuro 2a cells before and after H2O2 treatment were employed for microarray analysis. It was found that selective oxidation of mRNA already occurs under normal culture conditions but was increased by H2O2, especially in a subset of mRNAs related to certain functions. Moreover, mRNA oxidation level is also related to its abundance or stability (half-life time). This shows for the first time that mRNA oxidation is associated with RNA homeostasis including function, stability and abundance depending on cellular redox status in a genome-wide scale.
Project description:We report the electrochemical oxidation of ferricyanide, [FeIII(CN)6]3- and characterised the oxidation product by in-situ FTIR and XAS spectroelectrochemistry methods. Oxidation of [FeIII(CN)6]3- is proposed to proceed via a tentative Fe(IV) intermediate that undergoes reduction elimination to give cis-[FeIII(CN)4(CH3CN)2]1- as stable product in acetonitrile. Speciation of the oxidation product by DFT calculations is underpinned by good agreement to experimental data.