Project description:Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.
Project description:The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.
Project description:SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvβ3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.
Project description:SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging showed that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Strikingly, cellular cryo-electron tomography revealed dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and found that S protein recognizes integrin α v β 3 . Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.
Project description:The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen, which is linked to aggressive forms of periodontitis and can be associated with endocarditis. The outer membrane vesicles (OMVs) of this species contain effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA), which they can deliver into human host cells. The OMVs can also activate innate immunity through NOD1- and NOD2-active pathogen-associated molecular patterns. This dataset provides a proteome of highly purified OMVs from A. actinomycetemcomitans serotype e strain 173. The experimental data do not only include the raw data of the LC-MS/MS analysis of four independent preparations of purified OMVs but also the mass lists of the processed data and the Mascot.dat files from the database searches. In total 501 proteins are identified, of which 151 are detected in at least three of four independent preparations. In addition, this dataset contains the COG definitions and the predicted subcellular locations (PSORTb 3.0) for the entire genome of A. actinomycetemcomitans serotype e strain SC1083, which is used for the evaluation of the LC-MS/MS data. These data are deposited in ProteomeXchange in the public dataset PXD002509. In addition, a scientific interpretation of this dataset by Kieselbach et al. (2015) [2] is available at http://dx.doi.org/10.1371/journal.pone.0138591.
Project description:Ras-GTPase-activating protein SH3-domain-binding proteins (G3BP) are critical for the formation of stress granules (SGs) through their RNA- and ribosome-binding properties. SARS-CoV-2 nucleocapsid (N) protein exhibits strong binding affinity for G3BP and inhibits infection-induced SG formation soon after infection. To study the impact of the G3BP-N interaction on viral replication and pathogenesis in detail, we generated a mutant SARS-CoV-2 (RATA) that specifically lacks the G3BP-binding motif in the N protein. RATA triggers a stronger and more persistent SG response in infected cells, showing reduced replication across various cell lines, and greatly reduced pathogenesis in K18-hACE2 transgenic mice. At early times of infection, G3BP and WT N protein strongly colocalise with dsRNA and with non-structural protein 3 (nsp3), a component of the pore complex in double membrane vesicles (DMVs) from which nascent viral RNA emerges. Furthermore, G3BP-N complexes promote highly localized translation of viral mRNAs in the immediate vicinity of the DMVs and thus contribute to efficient viral gene expression and replication. In contrast, G3BP is absent from the DMVs in cells infected with RATA and translation of viral mRNAs is less efficient. This work provides a fuller understanding of the multifunctional roles of G3BP in SARS-CoV-2 infection.
Project description:SARS-CoV-2 entry into host cells is mediated by the spike protein, which drives membrane fusion. While cryo-EM has revealed stable prefusion and postfusion conformations of the spike, the transient intermediate states during the fusion process have remained poorly understood. Here, we designed a near-native viral fusion system that recapitulates SARS-CoV-2 entry and used cryo-electron tomography (cryo-ET) to capture fusion intermediates leading to complete fusion. The spike protein undergoes extensive structural rearrangements, progressing through extended, partially folded, and fully folded intermediates prior to fusion-pore formation, a process that is dependent on protease cleavage and inhibited by the WS6 S2 antibody. Upon interaction with ACE2 receptor dimer, spikes cluster at membrane interfaces and following S2' cleavage concurrently transition to postfusion conformations encircling the hemifusion and pre-fusion pores in a distinct conical arrangement. Subtomogram averaging revealed that the WS6 S2 antibody binds to the spike's stem-helix, crosslinks and clusters prefusion spikes and inhibits refolding of fusion intermediates. These findings elucidate the complete process of spike-mediated fusion and SARS-CoV-2 entry, highlighting the neutralizing mechanism of S2-targeting antibodies.
Project description:Gas vesicles (GVs) are gas-filled protein nanostructures employed by several species of bacteria and archaea as flotation devices to enable access to optimal light and nutrients. The unique physical properties of GVs have led to their use as genetically encodable contrast agents for ultrasound and MRI. Currently, however, the structure and assembly mechanism of GVs remain unknown. Here we employ cryoelectron tomography to reveal how the GV shell is formed by a helical filament of highly conserved GvpA subunits. This filament changes polarity at the center of the GV cylinder, a site that may act as an elongation center. Subtomogram averaging reveals a corrugated pattern of the shell arising from polymerization of GvpA into a β sheet. The accessory protein GvpC forms a helical cage around the GvpA shell, providing structural reinforcement. Together, our results help explain the remarkable mechanical properties of GVs and their ability to adopt different diameters and shapes.