Project description:BackgroundInsects thriving on nutritionally poor habitats have integrated mutualistic intracellular symbiotic bacteria (endosymbionts) in a bacteria-bearing tissue (the bacteriome) that isolates the endosymbionts and protects them against a host systemic immune response. Whilst the metabolic and physiological features of long-term insect associations have been investigated in detail over the past decades, cellular and immune regulations that determine the host response to endosymbionts and pathogens have attracted interest more recently.ResultsTo investigate bacteriome cellular specificities and weevil immune responses to bacteria, we have constructed and sequenced 7 cDNA libraries from Sitophilus oryzae whole larvae and bacteriomes. Bioinformatic analysis of 26,886 ESTs led to the generation of 8,941 weevil unigenes. Based on in silico analysis and on the examination of genes involved in the cellular pathways of potential interest to intracellular symbiosis (i.e. cell growth and apoptosis, autophagy, immunity), we have selected and analyzed 29 genes using qRT-PCR, taking into consideration bacteriome specificity and symbiosis impact on the host response to pathogens. We show that the bacteriome tissue accumulates transcripts from genes involved in cellular development and survival, such as the apoptotic inhibitors iap2 and iap3, and endosomal fusion and trafficking, such as Rab7, Hrs, and SNARE. As regards our investigation into immunity, we first strengthen the bacteriome immunomodulation previously reported in S. zeamais. We show that the sarcotoxin, the c-type lysozyme, and the wpgrp2 genes are downregulated in the S. oryzae bacteriome, when compared to aposymbiotic insects and insects challenged with E. coli. Secondly, transcript level comparison between symbiotic and aposymbiotic larvae provides evidence that the immune systemic response to pathogens is decreased in symbiotic insects, as shown by the relatively high expression of wpgrp2, wpgrp3, coleoptericin-B, diptericin, and sarcotoxin genes in aposymbiotic insects.ConclusionsLibrary sequencing significantly increased the number of unigenes, allowing for improved functional and genetic investigations in the cereal weevil S. oryzae. Transcriptomic analyses support selective and local immune gene expression in the bacteriome tissue and uncover cellular pathways that are of potential interest to bacteriocyte survival and homeostasis. Bacterial challenge experiments have revealed that the systemic immune response would be less induced in a symbiotic insect, thus highlighting new perspectives on host immunity in long-term invertebrate co-evolutionary associations.
Project description:Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.
Project description:Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.
Project description:Recent advances in three-dimensional electron microscopy provide remarkable tools to image the interior of bacterial cells. Glimpses of cells at resolutions that are 1-2 orders of magnitude higher than those currently attained with light microscopy can now be obtained with cryo-electron tomography, especially when used in combination with new tools for image averaging. This Review highlights recent advances in this area and provides an assessment of the general applicability, current limitations and type of structural information that can be obtained about the organization of intact cells using tomography. Possible future directions for whole cell imaging are also discussed.
Project description:High levels of resistance to phosphine in the rice weevil Sitophilus oryzae have been detected in Asian countries including China and Vietnam, however there is limited knowledge of the genetic mechanism of resistance in these strains. We find that the genetic basis of strong phosphine resistance is conserved between strains of S. oryzae from China, Vietnam, and Australia. Each of 4 strongly resistant strains has an identical amino acid variant in the encoded dihydrolipoamide dehydrogenase (DLD) enzyme that was previously identified as a resistance factor in Rhyzopertha dominica and Tribolium castaneum. The unique amino acid substitution, Asparagine > Threonine (N505T) of all strongly resistant S. oryzae corresponds to the position of an Asparagine > Histidine variant (N506H) that was previously reported in strongly resistant R. dominica. Progeny (F16 and F18) from 2 independent crosses showed absolute linkage of N505T to the strong resistance phenotype, indicating that if N505T was not itself the resistance variant that it resided within 1 or 2 genes of the resistance factor. Non-complementation between the strains confirmed the shared genetic basis of strong resistance, which was supported by the very similar level of resistance between the strains, with LC50 values ranging from 0.20 to 0.36 mg L(-1) for a 48-h exposure at 25 °C. Thus, the mechanism of high-level resistance to phosphine is strongly conserved between R. dominica, T. castaneum and S. oryzae. A fitness cost associated with strongly resistant allele was observed in segregating populations in the absence of selection.
Project description:In populations that are small and asexual, mutations with slight negative effects on fitness will drift to fixation more often than in large or sexual populations in which they will be eliminated by selection. If such mutations occur in substantial numbers, the combined effects of long-term asexuality and small population size may result in substantial accumulation of mildly deleterious substitutions. Prokaryotic endosymbionts of animals that are transmitted maternally for very long periods are effectively asexual and experience smaller effective population size than their free-living relatives. The contrast between such endosymbionts and related free-living bacteria allows us to test whether a population structure imposing frequent bottlenecks and asexuality does lead to an accumulation of slightly deleterious substitutions. Here we show that several independently derived insect endosymbionts, each with a long history of maternal transmission, have accumulated destabilizing base substitutions in the highly conserved 16S rRNA. Stabilities of Domain I of this subunit are 15-25% lower in endosymbionts than in closely related free-living bacteria. By mapping destabilizing substitutions onto a reconstructed phylogeny, we show that decreased ribosomal stability has evolved separately in each endosymbiont lineage. Our phylogenetic approach allows us to demonstrate statistical significance for this pattern: becoming endosymbiotic predictably results in decreased stability of rRNA secondary structure.
Project description:Endosymbiotic bacteria were identified in the parasitic ciliate Ichthyophthirius multifiliis, a common pathogen of freshwater fish. PCR amplification of DNA prepared from two isolates of I. multifiliis, using primers that bind conserved sequences in bacterial 16S rRNA genes, generated an approximately 1,460-bp DNA product, which was cloned and sequenced. Sequence analysis demonstrated that 16S rRNA gene sequences from three classes of bacteria were present in the PCR product. These included Alphaproteobacteria (Rickettsiales), Sphingobacteria, and Flavobacterium columnare. DAPI (4',6-diamidino-2-phenylindole) staining showed endosymbionts dispersed throughout the cytoplasm of trophonts and, in most, but not all theronts. Endosymbionts were observed by transmission electron microscopy in the cytoplasm, surrounded by a prominent, electron-translucent halo characteristic of Rickettsia. Fluorescence in situ hybridization demonstrated that bacteria from the Rickettsiales and Sphingobacteriales classes are endosymbionts of I. multifiliis, found in the cytoplasm, but not in the macronucleus or micronucleus. In contrast, F. columnare was not detected by fluorescence in situ hybridization. It likely adheres to I. multifiliis through association with cilia. The role that endosymbiotic bacteria play in the life history of I. multifiliis is not known.
Project description:From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance.
Project description:BackgroundThe rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions.ResultsWe sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis.ConclusionsHere we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.