Project description:Long non-coding RNAs (lncRNAs) have been recently shown to play an important role in gene regulation and normal cellular functions, and disease processes. However, despite the overwhelming number of lncRNAs identified to date, little is known about their role in cancer for vast majority of them. The present study aims to determine whether lncRNAs can serve as prognostic markers in human breast cancer. We interrogated the breast invasive carcinoma dataset of the Cancer Genome Atlas (TCGA) at the cBioPortal consisting of ~ 1,000 cases. Among 2,730 lncRNAs analyzed, 577 lncRNAs had alterations ranging from 1% to 32% frequency, which include mutations, alterations of copy number and RNA expression. We found that deregulation of 11 lncRNAs, primarily due to copy number alteration, is associated with poor overall survival. At RNA expression level, upregulation of 4 lncRNAs (LINC00657, LINC00346, LINC00654 and HCG11) was associated with poor overall survival. A third signature consists of 9 lncRNAs (LINC00705, LINC00310, LINC00704, LINC00574, FAM74A3, UMODL1-AS1, ARRDC1-AS1, HAR1A, and LINC00323) and their upregulation can predict recurrence. Finally, we selected LINC00657 to determine their role in breast cancer, and found that LINC00657 knockout significantly suppresses tumor cell growth and proliferation, suggesting that it plays an oncogenic role. Together, these results highlight the clinical significance of lncRNAs, and thus, these lncRNAs may serve as prognostic markers for breast cancer.
Project description:Increasing studies have shown that mature spermatozoa contain many transcripts including mRNAs and miRNAs. However, the expression profile of long non-coding RNAs (lncRNAs) in mammalian sperm has not been systematically investigated. Here, we used highly purified RNA to investigate lncRNA expression profiles in mouse mature sperm by stranded-specific RNA-seq. We identified 20,907 known and 4,088 novel lncRNAs transcripts, and the existence of intact lncRNAs was confirmed by RT-PCR and fluorescence in situ hybridization on two representative lncRNAs. Compared to round spermatids, 1,794 upregulated and 165 downregulated lncRNAs and 4,435 upregulated and 3,920 downregulated mRNAs were identified in sperm. Based on the "Cis and Trans" RNA-RNA interaction principle, we found 14,259 targeted coding genes of differently expressed lncRNAs. In terms of Gene ontology (GO) analysis, differentially expressed lncRNAs targeted genes mainly related to nucleic acid metabolic, protein modification, chromatin and histone modification, heterocycle compound metabolic, sperm function, spermatogenesis and other processes. In contrast, differentially expressed transcripts of mRNAs were highly enriched for protein metabolic process and RNA metabolic, spermatogenesis, sperm motility, cell cycle, chromatin organization, heterocycle and aromatic compound metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the differentially expressed lncRNAs were involved in RNA transport, mRNA surveillance pathway, PI3K-Akt signaling pathway, AMPK signaling pathway, protein processing in endoplasmic reticulum. Metabolic pathways, mRNA surveillance pathway, AMPK signaling pathway, cell cycle, RNA transport splicesome and endocytosis incorporated with the differentially expressed mRNA. Furthermore, many lncRNAs were specifically expressed in testis/sperm, and 880 lncRNAs were conserved between human and mouse. In summary, this study provides a preliminary database valuable for identifying lncRNAs critical in the late stage of spermatogenesis or important for sperm function regulation, fertilization and early embryo development.
Project description:Hundreds of long non-coding RNAs (lncRNAs) have been identified as potential regulators of gene expression, but their functions remain largely unknown. To study the role of lncRNAs during vertebrate development, we selected 25 zebrafish lncRNAs based on their conservation, expression profile or proximity to developmental regulators, and used CRISPR-Cas9 to generate 32 deletion alleles. We observed altered transcription of neighboring genes in some mutants, but none of the lncRNAs were required for embryogenesis, viability or fertility. Even RNAs with previously proposed non-coding functions (cyrano and squint) and other conserved lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence of putative DNA regulatory-elements, but not of the lncRNA transcript itself, resulted in abnormal development. LncRNAs might have redundant, subtle, or context-dependent roles, but extrapolation from our results suggests that the majority of individual zebrafish lncRNAs have no overt roles in embryogenesis, viability and fertility.
Project description:Colorectal cancer is one of the most common causes of cancer-related deaths worldwide. Despite the advances in the knowledge of pathogenetic molecular mechanisms and the implementation of more effective drug treatments in recent years, the overall survival rate of patients remains unsatisfactory. The high death rate is mainly due to metastasis of cancer in about half of the cancer patients and the emergence of drug-resistant populations of cancer cells. Improved understanding of cancer molecular biology has highlighted the role of non-coding RNAs (ncRNAs) in colorectal cancer development and evolution. ncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions of long non-coding RNAs (lncRNAs) with both microRNAs (miRNAs) and proteins, and through the action of lncRNAs as miRNA precursors or pseudogenes. LncRNAs can also be detected in the blood and circulating ncRNAs have become a new source of non-invasive cancer biomarkers for the diagnosis and prognosis of colorectal cancer, as well as for predicting the response to drug therapy. In this review, we focus on the role of lncRNAs in colorectal cancer development, progression, and chemoresistance, and as possible therapeutic targets.
Project description:The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.
Project description:BACKGROUND: Recent analysis of the mouse transcriptional data has revealed the existence of approximately 34,000 messenger-like non-coding RNAs (ml-ncRNAs). Whereas the functional properties of these ml-ncRNAs are beginning to be unravelled, no functional information is available for the large majority of these transcripts. RESULTS: A few ml-ncRNA have been shown to have genomic loci that overlap with microRNA loci, leading us to suspect that a fraction of ml-ncRNA may encode microRNAs. We therefore developed an algorithm (PriMir) for specifically detecting potential microRNA-encoding transcripts in the entire set of 34,030 mouse full-length ml-ncRNAs. In combination with mouse-rat sequence conservation, this algorithm detected 97 (80 of them were novel) strong miRNA-encoding candidates, and for 52 of these we obtained experimental evidence for the existence of their corresponding mature microRNA by microarray and stem-loop RT-PCR. Sequence analysis of the microRNA-encoding RNAs revealed an internal motif, whose presence correlates strongly (R2 = 0.9, P-value = 2.2 x 10(-16)) with the occurrence of stem-loops with characteristics of known pre-miRNAs, indicating the presence of a larger number microRNA-encoding RNAs (from 300 up to 800) in the ml-ncRNAs population. CONCLUSION: Our work highlights a unique group of ml-ncRNAs and offers clues to their functions.
Project description:Current prostate cancer (PCa) biomarkers such as PSA are not optimal in distinguishing cancer from benign prostate diseases and predicting disease outcome. To discover additional biomarkers, we investigated PCa-specific expression of novel unannotated transcripts. Using the unique probe design of Affymetrix Human Exon Arrays, we identified 334 candidates (EPCATs), of which 15 were validated by RT-PCR. Combined into a diagnostic panel, 11 EPCATs classified 80% of PCa samples correctly, while maintaining 100% specificity. High specificity was confirmed by in situ hybridization for EPCAT4R966 and EPCAT2F176 (SChLAP1) on extensive tissue microarrays. Besides being diagnostic, EPCAT2F176 and EPCAT4R966 showed significant association with pT-stage and were present in PIN lesions. We also found EPCAT2F176 and EPCAT2R709 to be associated with development of metastases and PCa-related death, and EPCAT2F176 to be enriched in lymph node metastases. Functional significance of expression of 9 EPCATs was investigated by siRNA transfection, revealing that knockdown of 5 different EPCATs impaired growth of LNCaP and 22RV1 PCa cells. Only the minority of EPCATs appear to be controlled by androgen receptor or ERG. Although the underlying transcriptional regulation is not fully understood, the novel PCa-associated transcripts are new diagnostic and prognostic markers with functional relevance to prostate cancer growth.
Project description:Recent studies have emphasized an important role for long non-coding RNAs (lncRNA) in epigenetic regulation, development, and disease. Despite growing interest in lncRNAs, the mechanisms by which lncRNAs control cellular processes are still elusive. Improved understanding of these mechanisms is critical, because the majority of the mammalian genome is transcribed, in most cases resulting in non-coding RNA products. Recent studies have suggested the involvement of lncRNA in neurobehavioral and neurodevelopmental disorders, highlighting the functional importance of this subclass of brain-enriched RNAs. Impaired expression of lnRNAs has been implicated in several forms of intellectual disability disorders. However, the role of this family of RNAs in cognitive function is largely unknown. Here we provide an overview of recently identified mechanisms of neuronal development involving lncRNAs, and the consequences of lncRNA deregulation for neurodevelopmental disorders.
Project description:Recent large-scale transcriptome analyses have revealed that transcription is spread throughout the mammalian genomes, yielding large numbers of transcripts, including long non-coding RNAs (lncRNAs) with little or no protein-coding capacity. Dozens of lncRNAs have been identified as biologically significant. In many cases, lncRNAs act as key molecules in the regulation of processes such as chromatin remodeling, transcription, and post-transcriptional processing. Several lncRNAs (e.g., MALAT1, HOTAIR, and ANRIL) are associated with human diseases, including cancer. Those lncRNAs associated with cancer are often aberrantly expressed. Although the underlying molecular mechanisms by which lncRNAs regulate cancer development are unclear, recent studies have revealed that such aberrant expression of lncRNAs affects the progression of cancers. In this review, we highlight recent findings regarding the roles of lncRNAs in cancer biology.
Project description:Less than 2% of the genome encodes for proteins. Accumulating studies have revealed a diverse set of RNAs derived from the non-coding genome. Among them, long non-coding RNAs (lncRNAs) have garnered widespread attention over recent years as emerging regulators of diverse biological processes including in cardiovascular disease (CVD). However, our knowledge of their mechanisms by which they control CVD-related gene expression and cell signaling pathways is still limited. Furthermore, only a handful of lncRNAs has been functionally evaluated in the context of vascular inflammation, an important process that underlies both acute and chronic disease states. Because some lncRNAs may be expressed in cell- and tissue-specific expression patterns, these non-coding RNAs hold great promise as novel biomarkers and as therapeutic targets in health and disease. Herein, we review those lncRNAs implicated in pro- and anti-inflammatory processes of acute and chronic vascular inflammation. An improved understanding of lncRNAs in vascular inflammation may provide new pathophysiological insights in CVD and opportunities for the generation of a new class of RNA-based biomarkers and therapeutic targets.