Project description:The broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.
Project description:BackgroundMeiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.ResultsA high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes.ConclusionThese findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.
Project description:BackgroundGenome annotation is of key importance in many research questions. The identification of protein-coding genes is often based on transcriptome sequencing data, ab-initio or homology-based prediction. Recently, it was demonstrated that intron position conservation improves homology-based gene prediction, and that experimental data improves ab-initio gene prediction.ResultsHere, we present an extension of the gene prediction program GeMoMa that utilizes amino acid sequence conservation, intron position conservation and optionally RNA-seq data for homology-based gene prediction. We show on published benchmark data for plants, animals and fungi that GeMoMa performs better than the gene prediction programs BRAKER1, MAKER2, and CodingQuarry, and purely RNA-seq-based pipelines for transcript identification. In addition, we demonstrate that using multiple reference organisms may help to further improve the performance of GeMoMa. Finally, we apply GeMoMa to four nematode species and to the recently published barley reference genome indicating that current annotations of protein-coding genes may be refined using GeMoMa predictions.ConclusionsGeMoMa might be of great utility for annotating newly sequenced genomes but also for finding homologs of a specific gene or gene family. GeMoMa has been published under GNU GPL3 and is freely available at http://www.jstacs.de/index.php/GeMoMa .
Project description:Using a chromatin regulator-focused shRNA library, we found that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes resistance to BRAF and MEK inhibitors. To investigate how SOX10 loss leads to drug resistance, we performed transcriptome sequencing (RNAseq) of both parental A375 (Ctrl. PLKO) and A375-SOX10KD (shSOX10-1, shSOX10-2) cells. To ask directly whether SOX10 is involved indrug resistance in BRAF(V600E) melanoma patients, we isolated RNA from paired biopsies from melanoma patients (pre- and post- treatment) , that had gained BRAF or MEK inhibitor resistance . We performed RNAseq analysis to determine changes in transcriptome upon drug resistance. Investigate genes regulated by SOX10 and differntial gene expression between pre- and post-treatment biopsies. We use short hairpin RNA to suppression SOX10 in A375 cells and cells were harvested with trizol reagent for RNA isolation. For paired biopsies (patient samples) we collected the first biopsy before the initiation of treatment and the second biopsy after drug resistance developed. RNA was isolated from FFPE samples and subjected for RNA sequencing.
Project description:Root-knot nematodes secrete proteinaceous effectors into plant tissues to facilitate infection by suppressing host defences and reprogramming the host metabolism to their benefit. Meloidogyne graminicola is a major pest of rice (Oryza sativa) in Asia and Latin America, causing important crop losses. The goal of this study was to identify M. graminicola pathogenicity genes expressed during the plant-nematode interaction. Using the dual RNA-sequencing (RNA-seq) strategy, we generated transcriptomic data of M. graminicola samples covering the pre-parasitic J2 stage and five parasitic stages in rice plants, from the parasitic J2 to the adult female. In the absence of a reference genome, a de novo M. graminicola transcriptome of 66 396 contigs was obtained from those reads that were not mapped on the rice genome. Gene expression profiling across the M. graminicola life cycle revealed key genes involved in nematode development and provided insights into the genes putatively associated with parasitism. The development of a 'secreted protein prediction' pipeline revealed a typical set of proteins secreted by nematodes, as well as a large number of cysteine-rich proteins and putative nuclear proteins. Combined with expression data, this pipeline enabled the identification of 15 putative effector genes, including two homologues of well-characterized effectors from cyst nematodes (CLE-like and VAP1) and a metallothionein. The localization of gene expression was assessed by in situ hybridization for a subset of candidates. All of these data represent important molecular resources for the elucidation of M. graminicola biology and for the selection of potential targets for the development of novel control strategies for this nematode species.
Project description:RNA-seq was performed on breast cancer cell lines and primary tumors RNA-seq was performed on 28 breast cancer cell lines, 42 Triple Negative Breast Cancer (TNBC) primary tumors, and 42 Estrogen Receptor Positive (ER+) and HER2 Negative Breast Cancer primary tumors, 30 uninovlved breast tissue samples that were adjacent to ER+ primary tumors, 5 breast tissue samples from reduction mammoplasty procedures performed on patients with no known cancer, and 21 uninvolved breast tissue samples that were adjacent to TNBC primary tumors.
Project description:Rice stripe virus (RSV) has become a major pathogen of rice. To determine how the rice transcriptome is modified in response to RSV infection, we used RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar. The transcriptomes of RSV-infected samples were compared to those of mock-treated samples at 3, 7, and 15 days post-infection (dpi). From 8 to 11% of the genes were differentially expressed (>2-fold difference in expression) in RSV-infected vs. noninfected rice. Among them, 532 genes were differentially expressed at all three time points. Surprisingly, 37.6% of the 532 genes are related to transposons. Gene ontology enrichment analysis revealed that many chloroplast genes were down-regulated in infected plants at 3 and 15 dpi. Expression of genes associated with cell differentiation and flowering was significantly down-regulated in infected plants at 15 dpi. In contrast, most of the up-regulated genes in infected plants concern the cell wall, plasma membrane, and vacuole and are known to function in various metabolic pathways and stress responses. In addition, transcripts of diverse transcription factors gradually accumulated in infected plants with increasing infection time. We also confirmed that the expression of gene subsets (including NBS-LRR domain-containing genes, receptor-like kinase genes, and genes involving RNA silencing) was changed by RSV infection. Taken together, we demonstrated that down-regulation of genes related to photosynthesis and flowering was strongly associated with disease symptoms caused by RSV and that up-regulation of genes involved in metabolic pathways, stress responses, and transcription was related to host defense mechanisms.
Project description:BackgroundWhile photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels.ResultsHere, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa.ConclusionsFull heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.