Project description:Advances in several key technologies, including MHC peptidomics, has helped fuel our understanding of basic immune regulatory mechanisms and identify T cell receptor targets for the development of immunotherapeutics. Isolating and accurately quantifying MHC-bound peptides from cells and tissues enables characterization of dynamic changes in the ligandome due to cellular perturbations. This multi-step analytical process remains challenging, and throughput and reproducibility are paramount for rapidly characterizing multiple conditions in parallel. Here, we describe a robust and quantitative method whereby peptides derived from MHC-I complexes from a variety of cell lines, including challenging adherent lines, can be enriched in a semi-automated fashion on reusable, dry-storage, customized antibody cartridges. TOMAHAQ, a targeted mass spectrometry technique that combines sample multiplexing and high sensitivity, was employed to characterize neoepitopes displayed on MHC-I by tumor cells and to quantitatively assess the influence of neoantigen expression and induced degradation on neoepitope presentation.
Project description:Secondary lymphedema accompanied with strong restrictions in quality of life is still major side effects in cancer therapy. Therefore, dedicated diagnostic tools and further investigation of the lymphatic system are crucial to improve lymphedema therapy. In this pilot study, a method for quantitative analysis of the lymphatic system in a rat model by laser ablation (LA) with inductively coupled plasma mass spectrometry imaging (ICP-MSI) is presented. As a possible lymph marker, thulium(III)(1R,4R,7R,10R)-α,α',α'',α'''-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (Tm-DOTMA) is introduced and compared to the clinically used magnetic resonance imaging contrast agent gadolinium(III)2,2',2''-(10-((2R,3S)-1,3,4-trihydroxybutan-2-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (Gd-DO3A-butrol). Gadobutrol functioned as standard contrast media in MRI lymphangiography to detect lymphatic flow qualitatively. Thus, Tm-DOTMA was investigated as lymphatic marker to detect lymphatic flow quantitatively. Both contrast agents were successfully used to visualize the lymphatic flow in successive lymph nodes in LA-ICP-MS due to lower limits of detection compared to MRI. Furthermore, the distribution of contrast agents by multicolored imaging showed accumulation in specific areas (sectors) of the lymph nodes after application of contrast agents in different areas.
Project description:Abstract Monitoring plant responses to stress is an ongoing challenge for crop breeders, growers, and agronomists. The measurement of below‐ground stress is particularly challenging as plants do not always show visible signs of stress in the above‐ground organs, particularly at early stages. Hyperspectral imaging is a technique that could be used to overcome this challenge if associations between plant spectral data and specific stresses can be determined. In this study, three genotypes of red raspberry plants grown under controlled conditions in a glasshouse were subjected to below‐ground biotic stresses (root pathogen Phytophthora rubi and root herbivore Otiorhynchus sulcatus) or abiotic stress (soil water availability) and regularly imaged using hyperspectral cameras over this period. Significant differences were observed in plant biophysical traits (canopy height and leaf dry mass) and canopy reflectance spectrum between the three genotypes and the imposed stress treatments. The ratio of reflectance at 469 and 523 nm showed a significant genotype‐by‐treatment interaction driven by differential genotypic responses to the P. rubi treatment. This indicates that spectral imaging can be used to identify variable plant stress responses in raspberry plants.
Project description:(1) Background: MALDI imaging is a technique that still largely depends on time of flight (TOF)-based instrument such as the Bruker UltrafleXtreme. While capable of performing targeted MS/MS, these instruments are unable to perform fragmentation while imaging a tissue section necessitating the reliance of MS1 values for peptide level identifications. With this premise in mind, we have developed a hybrid bioinformatic/image-based method for the identification and validation of viral biomarkers. (2) Methods: Formalin-Fixed Paraffin-Embedded (FFPE) mouse samples were sectioned, mounted and prepared for mass spectrometry imaging using our well-established methods. Peptide identification was achieved by first extracting confident images corresponding to theoretical viral peptides. Next, those masses were used to perform a Peptide Mmass Fingerprint (PMF) searched against known viral FASTA sequences against a background mouse FASTA database. Finally, a correlational analysis was performed with imaging data to confirm pixel-by-pixel colocalization and intensity of viral peptides. (3) Results: 14 viral peptides were successfully identified with significant PMF Scores and a correlational result of >0.79 confirming the presence of the virus and distinguishing it from the background mouse proteins. (4) Conclusions: this novel approach leverages the power of mass spectrometry imaging and provides confident identifications for viral proteins without requiring MS/MS using simple MALDI Time Of Flight/Time Of Flight (TOF/TOF) instrumentation.
Project description:Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular level, leading to the view that subpopulations of tumor cells drive growth and treatment resistance. To examine the degree to which tumors also exhibit metabolic heterogeneity at the level of individual cells, we employed multi-isotope imaging mass spectrometry (MIMS) to quantify utilization of stable isotopes of glucose and glutamine along with a label for cell division. Mouse models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited striking heterogeneity of substrate utilization, evident in both proliferating and non-proliferating cells. We identified a correlation between metabolic heterogeneity, proliferation, and therapeutic resistance. Heterogeneity in metabolic substrate usage as revealed by incorporation of glucose and glutamine tracers is thus a marker for tumor proliferation. Collectively, our data demonstrate that MIMS provides a powerful tool with which to dissect metabolic functions of individual cells within the native tumor environment.
Project description:Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.
Project description:Transcriptomic studies have attempted to classify glioblastoma (GB) into subtypes that predict survival and that have different therapeutic vulnerabilities. Here we identified three metabolic subtypes: glycolytic, oxidative and a mixed glycolytic/oxidative by mass spectrometry imaging of rapidly excised tumour sections from two GB patients infused with [U-13C]glucose and from spatial transcriptomic analysis of contiguous sections. The phenotypes did not correlate with microenvironmental features, including proliferation rate, immune cell infiltration, and vascularisation, were retained when patient-derived cells were grown in vitro, or as orthotopically implanted xenografts, and were robust to changes in oxygen concentration, demonstrating their cell intrinsic nature. The spatial extent of the regions occupied by cells displaying these distinct metabolic phenotypes are large enough to be detected using clinically applicable metabolic imaging techniques. A limitation of the study is that it is based on only two patient tumours, albeit on multiple sections, and therefore represents a proof-of-concept study. Glioblastoma is the most common primary adult brain cancer. Transcriptomic analyses have attempted to classify GB into subtypes that could predict treatment response, with a recent study that used a pathway-based classification defining metabolism-associated subtypes with distinct therapeutic vulnerabilities. These included a mitochondrial subtype, which is associated with a more favourable clinical outcome and that is sensitive to inhibitors of oxidative phosphorylation, and a glycolytic/plurimetabolic subtype that is resistant to multiple treatment types. An important question is the extent to which the metabolism displayed by tumour cells in vivo are cell intrinsic and how much they are defined by the tumour microenvironment. We have addressed this question using mass spectrometry imaging of rapidly excised tumour sections from GB patients infused with [U-13C]glucose immediately prior to surgery to image tumour cell metabolic fluxes in vivo and from a spatial transcriptomic analysis of adjacent sections. To our knowledge, this is the first report demonstrating high resolution imaging of metabolic fluxes in a human tumour in vivo.
Project description:Immuno-mass spectrometry imaging uses lanthanide-conjugated antibodies to spatially quantify biomolecules via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The multi-element capabilities allow for highly multiplexed analyses that may include both conjugated antibodies and endogenous metals to reveal relationships between disease and chemical composition. Sample handling is known to perturb the composition of the endogenous elements, but there has been little investigation into the effects of immunolabelling and coverslipping. Here, we used cryofixed muscle sections to examine the impact of immunolabelling steps on the concentrations of a Gd-conjugated anti-dystrophin primary antibody, and the endogenous metals Cu and Zn. Primary antibody incubation resulted in a decrease in Zn, and an increase in Cu. Zn was removed from the cytoplasm where it was hypothesised to be more labile, whereas concentrated locations of Zn remained in the cell membrane in all samples that underwent the immunostaining process. Cu increased in concentration and was found mostly in the cell membrane. The concentration of the Gd-conjugated antibody when compared to the standard air-dried sample was not significantly different when coverslipped using an organic mounting medium, whereas use of an aqueous mounting medium significantly reduced the concentration of Gd. These results build on the knowledge of how certain sample handling techniques change elemental concentrations and distributions in tissue sections. Immunolabelling steps impact the concentration of endogenous elements, and separate histological sections are required for the quantitative analysis of endogenous elements and biomolecules. Additionally, coverslipping tissue sections for complementary immunohistochemical/immunofluorescent imaging may compromise the integrity of the elemental label, and organic mounting media are recommended over aqueous mounting media.
Project description:Retinoblastoma (RB) is an intraocular childhood tumor which, if left untreated, leads to blindness and mortality. Nucleolin (NCL) protein which is differentially expressed on the tumor cell surface, binds ligands and regulates carcinogenesis and angiogenesis. We found that NCL is over expressed in RB tumor tissues and cell lines compared to normal retina. We studied the effect of nucleolin-aptamer (NCL-APT) to reduce proliferation in RB tumor cells. Aptamer treatment on the RB cell lines (Y79 and WERI-Rb1) led to significant inhibition of cell proliferation. Locked nucleic acid (LNA) modified NCL-APT administered subcutaneously (s.c.) near tumor or intraperitoneally (i.p.) in Y79 xenografted nude mice resulted in 26 and 65% of tumor growth inhibition, respectively. Downregulation of inhibitor of apoptosis proteins, tumor miRNA-18a, altered serum cytokines, and serum miRNA-18a levels were observed upon NCL-APT treatment. Desorption electrospray ionization mass spectrometry (DESI MS)-based imaging of cell lines and tumor tissues revealed changes in phosphatidylcholines levels upon treatment. Thus, our study provides proof of concept illustrating NCL-APT-based targeted therapeutic strategy and use of DESI MS-based lipid imaging in monitoring therapeutic responses in RB.
Project description:Spatial proteomics has the potential to significantly advance our understanding of biology, physiology and medicine. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a powerful tool in the spatial proteomics field, enabling direct detection and registration of protein abundance and distribution across tissues. MALDI-MSI preserves spatial distribution and histology allowing unbiased analysis of complex, heterogeneous tissues. However, MALDI-MSI faces the challenge of simultaneous peptide quantification and identification. To overcome this, we develop and validate HIT-MAP (High-resolution Informatics Toolbox in MALDI-MSI Proteomics), an open-source bioinformatics workflow using peptide mass fingerprint analysis and a dual scoring system to computationally assign peptide and protein annotations to high mass resolution MSI datasets and generate customisable spatial distribution maps. HIT-MAP will be a valuable resource for the spatial proteomics community for analysing newly generated and retrospective datasets, enabling robust peptide and protein annotation and visualisation in a wide array of normal and disease contexts.