Project description:Symbioflor2® is a probiotic product composed of six Escherichia coli genotypes, which has a beneficial effect on irritable bowel syndrome. Our objective was to understand the individual impact of each of the six genotypes on the host, together with the combined impact of the six in the compound Symbioflor2®. Gnotobiotic mice were mono-associated with one of the six genotypes or associated with the compound product. Ileal and colonic gene expression profiling was carried out, and data were compared between the different groups of gnotobiotic mice, along with that obtained from conventional (CV) mice and mice colonized with the probiotic E. coli Nissle 1917. We show that Symbioflor2® genotypes induce intestinal transcriptional responses involved in defense and immune mechanisms. Using mice associated with Symbioflor2®, we reveal that the product elicits a balanced response from the host without any predominance of a single genotype. The Nissle strain and the six bacterial genotypes have different effects on the intestinal gene expression, suggesting that the impacts of these probiotics are not redundant. Our data show the effect of the Symbioflor2® genotypes at the molecular level in the digestive tract, which further highlights their beneficial action on several aspects of intestinal physiology.
Project description:BackgroundThe p16/Ki67 technique has been poorly studied in postmenopausal women with ASC-US cytology. The objective of this study was to compare the accuracy of p16/Ki67 staining, HPV testing and HPV 16 genotyping for the identification of CIN2 + lesions in postmenopausal women with ASC-US cytology.MethodA total of 324 postmenopausal women with positive ASC-US were included. The women underwent HPV test, colposcopy, and biopsy. The slides were discolored and then stained with the CINtec Plus Kit for p16/Ki67. The HPV test results were classified as HPV16 +, hrHPV+ (other hrHPV genotypes), or HPV negative.ResultsThe p16/Ki67 sensitivity for CIN2+ was 94.5%, the specificity 86.6%, PPV of 59% and NPV of 95.9%. The HPV test showed a sensitivity of 96.4% for CIN2+, a specificity of 62.8%, a PPV of 35% and a NPV of 98.8%. In postmenopausal women, the prevalence of genotype 16 decreases in favor of the other high-risk genotypes.ConclusionGiven the low sensitivity of cytology and the low percentage of HPV16-positive cancers among elderly women, triage via cytology and genotyping is not the best strategy; double staining cytology shows high profiles of sensibility and specificity for CIN2+ in ASCUS postmenopausal women.
Project description:BackgroundThe immunopathological impact of human Arcobacter (A.) infections is under current debate. Episodes of gastroenteritis with abdominal pain and acute or prolonged watery diarrhea were reported for A. butzleri infected patients. Whereas adhesive, invasive and cytotoxic capacities have been described for A. butzleri in vitro, only limited information is available about the immunopathogenic potential and mechanisms of infection in vivo.Methodology/principal findingsGnotobiotic IL-10-/- mice were generated by broad-spectrum antibiotic treatment and perorally infected with the A. butzleri strains CCUG 30485 and C1 shown to be invasive in cell culture assays. Bacterial colonization capacities, clinical conditions, intestinal, extra-intestinal and systemic immune responses were monitored at day six and 16 postinfection (p.i.). Despite stable intestinal A. butzleri colonization at high loads, gnotobiotic IL-10-/- mice were virtually unaffected and did not display any overt symptoms at either time point. Notably, A. butzleri infection induced apoptosis of colonic epithelial cells which was paralleled by increased abundance of proliferating cells. Furthermore A. butzleri infection caused a significant increase of distinct immune cell populations such as T and B cells, regulatory T cells, macrophages and monocytes in the colon which was accompanied by elevated colonic TNF, IFN-γ, nitric oxide (NO), IL-6, IL-12p70 and MCP-1 concentrations. Strikingly, A. butzleri induced extra-intestinal and systemic immune responses as indicated by higher NO concentrations in kidney and increased TNF, IFN-γ, IL-12p70 and IL-6 levels in serum samples of infected as compared to naive mice. Overall, inflammatory responses could be observed earlier in the course of infection by the CCUG 30485 as compared to the C1 strain.Conclusion/significancePeroral A. butzleri infection induced not only intestinal but also extra-intestinal and systemic immune responses in gnotobiotic IL-10-/- mice in a strain-dependent manner. These findings point towards an immunopathogenic potential of A. butzleri in vertebrate hosts.
Project description:We recently characterized the association between DNA damage and immunoresponse in vivo in colonic mucosa of mice infected with a Salmonella Typhimurium strain expressing a genotoxin, known as typhoid toxin. In this protocol, we describe how to assess the extent and features of infiltrating macrophages by double immunofluorescence. Total macrophage population was determined using an F4/80 antibody, whereas the specific M2-like population was assessed using a CD206 antibody. For complete details on the use and execution of this protocol, please refer to Martin et al. (2021).
Project description:Cell sorting can be used to purify cell populations for cell type-specific molecular probing. Fluorescence-activated cell sorting (FACS) coupled with high-throughput sequencing affords molecular signature identification for specific cell types. FACS has many challenges that limit comprehensive cell purification from the brain, leading to incomplete molecular characterization. Here, we present the intranuclear immunostaining-based FACS protocol with several modified steps, which allows optimized nuclei/cell sorting from mouse or human embryonic cortical tissue for distinct downstream molecular investigation of basal intermediate progenitors.
Project description:Determining whether associations between gut microbiota characteristics and host physiology represent causal relationships is a fundamental challenge for microbiome research. We report a detailed investigation of microbiome assembly in C57BL/6 germ-free mice across a period of 70 days and compare the effects of single and multiple rounds of gavage, using both native and antibiotic-disrupted murine donor material. Recipients of the native microbiota did not achieve compositional stability until day 28 and persistent differences to donor microbiota remained until day 70. Performing multiple rounds of gavage significantly increased the cumulative number of detected taxa (mean increase: 10.4%) and compositional similarity to donor, and significantly reduced within-group variance (p < 0.05). Multiple rounds of gavage with antibiotic-disrupted microbiota provided no substantial benefit in relation to compositional similarity to donor or within-group variance. The process of donor microbiota establishment in recipient animals is necessary before experimentation commences and is considerably influenced by donor microbiota characteristics.
Project description:PURPOSE:The Ki67 proliferation index is a prognostic and predictive marker in breast cancer. Manual scoring is prone to inter- and intra-observer variability. The aims of this study were to clinically validate digital image analysis (DIA) of Ki67 using virtual dual staining (VDS) on whole tissue sections and to assess inter-platform agreement between two independent DIA platforms. METHODS:Serial whole tissue sections of 154 consecutive invasive breast carcinomas were stained for Ki67 and cytokeratin 8/18 with immunohistochemistry in a clinical setting. Ki67 proliferation index was determined using two independent DIA platforms, implementing VDS to identify tumor tissue. Manual Ki67 score was determined using a standardized manual counting protocol. Inter-observer agreement between manual and DIA scores and inter-platform agreement between both DIA platforms were determined and calculated using Spearman's correlation coefficients. Correlations and agreement were assessed with scatterplots and Bland-Altman plots. RESULTS:Spearman's correlation coefficients were 0.94 (p < 0.001) for inter-observer agreement between manual counting and platform A, 0.93 (p < 0.001) between manual counting and platform B, and 0.96 (p < 0.001) for inter-platform agreement. Scatterplots and Bland-Altman plots revealed no skewness within specific data ranges. In the few cases with ? 10% difference between manual counting and DIA, results by both platforms were similar. CONCLUSIONS:DIA using VDS is an accurate method to determine the Ki67 proliferation index in breast cancer, as an alternative to manual scoring of whole sections in clinical practice. Inter-platform agreement between two different DIA platforms was excellent, suggesting vendor-independent clinical implementability.
Project description:Innate immunity natural Abs (NAbs) execute a number of functions, including protection and surveillance. Despite active research, the stimuli that induce the formation of NAbs are still described only hypothetically. Here, we compared repertoires of anti-glycan Abs in the peripheral blood of mice that received per os various bacteria. The repertoires of Abs of mice primed in this way were compared using a microarray that included about 350 glycans, as well as 150 bacterial polysaccharides. Sterile mice did not possess anti-glycan Abs. Oral inoculation of a single strain or combination of two to four strains of bacteria, as well as putting the animals on short-term nutrition with non-sterile food, did not contribute significantly to the formation of Abs, whereas a single gavage of digested food of non-sterile mice induced the formation of a repertoire close to the natural ones. Interestingly, the priming with polysaccharide Ags (in a composition of the bacterial cell envelope), that is, dominant Ags of bacteria, led to the induction of Abs against typical glycans of mammalian glycoproteins and glycolipids (e.g. Abs of the ABH blood group system) that do not have a structural similarity to the polysaccharides. The results support the importance of early contact with a naïve immune system with microorganisms of the environment to form a normal NAbs repertoire.
Project description:BackgroundEukaryotic microbes can modulate mammalian host health and disease states, yet the molecular contribution of gut fungi remains nascent. We previously showed that mice exclusively colonised with fungi displayed increased sensitivity to allergic airway inflammation and had fecal metabolite profiles similar to germ-free mice. This marginal effect on the host metabolome suggested that fungi do not primarily use metabolites to modulate the host immune system.MethodsTo describe functional changes attributed to fungal colonisation, we performed mass spectrometry-based analyses of feces (Label-Free Quantitative; LFQ) and the small intestine (labeling with Tandem Mass Tag; TMT) of gnotobiotic mice colonised with defined consortia of twelve bacterial species, five fungal species, or both. We also evaluated the effect of microbiome perturbances on the metaproteome by analysing feces from mouse pups treated with an antibiotic or antifungal.ResultsWe detected 6675 proteins in the mice feces, of which 3845 had determined LFQ levels. Analysis of variance showed changes in the different gnotobiotic mouse groups; specifically, 46% of 2860 bacterial, 15% of 580 fungal, and 76% of 405 mouse quantified proteins displayed differential levels. The antimicrobial treatments resulted in lasting changes in the bacterial and fungal proteomes, suggesting that the antimicrobials impacted the entire community. Fungal colonisation resulted in changes in host proteins functional in innate immunity as well as metabolism, predicting specific roles of gut fungi on host systems during early developmental stages. Several of the detected fungal proteins (3% of 1492) have been previously reported as part of extracellular vesicles and having immunomodulating properties. Using an isobaric labelling TMT approach for profiling low abundant proteins of the jejunal tissue, we confirmed that the five fungal species differentially impacted the host intestinal proteome compared to the bacterial consortium. The detected changes in mouse jejunal proteins (4% of 1514) were mainly driven by metabolic proteins.ConclusionsWe used quantitative proteomic profiling of gnotobiotic conditions to show how colonisation with selected fungal species impacts the host gut proteome. Our results suggest that an increased abundance of certain gut fungal species in early life may affect the developing intracellular attributes of epithelial and immune cells.