Mechanical tensions regulate gene expression in the Xenopus laevis neuroectoderm
Ontology highlight
ABSTRACT: During gastrulation and neurulation, chordamesoderm and overlying neuroectoderm of vertebrate embryo are converged under the control of specific genetic program to the dorsal midline, simultaneously extending along it. To reveal genes regulated by mechanical tensions developed as a result of these morphogenetic movements we compared transcriptomes of artificially stretched neuroectodermal explants of Xenopus laevis midgastrula embryos with the non-stretched one. Total RNA was extracted from cell lysed with Trisol reagent and PureLink RNA Micro Kit according to manufacture instruction. Quality was checked with BioAnalyser and RNA 6000 Nano Kit. PolyA RNA was purified with Dynabeads mRNA Purification Kit. Illumina library was made from polyA RNA with NEBNextNEBNext RNA Library Prep Kit for Illumina according to manual. Sequencing was performed on HiSeq1500 with 50 bp read length. At least 10 millions of reads were generated for each sample. Reads mapping was done using tophat2 software v.2.0.9. As a reference genome we used Xenopus Laevis build 6 (http://www.xenbase.org/genomes/static/laevis.jsp). For quantification, we used cufflinks v2.1.1.
Project description:During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.
Project description:Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
Project description:p63, a homolog of the tumor suppressor p53, is critical for the development and maintenance of complex epithelia. The developmentally regulated p63 isoform, DeltaNp63, can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological roles is unclear. Based on our initial finding that the mesoderm-inducing factor activin A is suppressed by DeltaNp63 in human keratinocytes, we investigated the role of DeltaNp63 in regulating mesoderm induction during early Xenopus laevis development. We find that down-regulation of DeltaNp63 by morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas ectopic expression of DeltaNp63 inhibits mesoderm formation. Furthermore, we show that mesodermal induction after down-regulation of DeltaNp63 is dependent on p53. We propose that a key function for p63 in defining a squamous epithelial phenotype is to actively suppress mesodermal cell fates during early development. Collectively, we show that there is a distinct requirement for different p53 family members during the development of both mesodermal and ectodermal tissues. These findings have implications for the role of p63 and p53 in both development and tumorigenesis of human epithelia.
Project description:BackgroundLimb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis.ResultsTranscriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation.ConclusionsWe identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.
Project description:The heparan sulfate 6-O-endosulfatases sulf1 and sulf2 regulate multiple cellular processes and organ development. Sulfs modulate a range of heparan-sulfate-dependent extracellular pathways, including the fibroblast growth factor, bone morphogenetic protein, and wingless/wnt signaling pathways. Known patterns of sulf transcript expression together with functional experiments have implicated the sulfs in chondrogenesis and muscle regeneration in mammals. Here, we describe the expression patterns of Xenopus laevis sulf1 and sulf2 in developing forelimbs and hindlimbs and demonstrate novel expression of the sulf transcripts in the regenerating hindlimbs, with prominent sulf2 expression in the proliferating blastema and transient expression of sulf1 in the redeveloping apical epidermal ridge. These findings further suggest involvement of the sulfs in successful limb regeneration in amphibians.
Project description:BackgroundReproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri).Methodology/principal findingsPhenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri.Conclusions/significanceOur results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level.
Project description:The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development.
Project description:We have isolated the Xenopus orthologue of the T-box gene, Tbx20, and characterized its developmental expression profile. We show that Tbx20 is one of the earliest markers of heart tissue in Xenopus, and is expressed throughout all cardiac tissue during later stages of development. In addition, we also observe expression in the cement gland, the jugular vein, the lung bud, the cloacal aperture, rhombomeres 2, 4, 6 and 8, and in a subset of motor neurons.
Project description:Epbl41l4a (erythrocyte protein band 4.1-like 4a, also named Nbl4) is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM (4.1, ezrin, radixin, moesin) protein superfamily. Proteins encoded by this gene family are involved in many cellular processes such as organization of epithelial cells and signal transduction. On a molecular level, band 4.1/Nbl4 proteins have been shown to link membrane-associated proteins and lipids to the actin cytoskeleton. Epbl41l4a has also recently been identified as a target gene of the Wnt/β-catenin pathway. Here, we describe for the first time the spatio-temporal expression of epbl41l4a using Xenopus laevis as a model system. We observed a strong and specific expression of epb41l4a in the developing somites, in particular during segmentation as well as in the nasal and cranial placodes, pronephros, and neural tube. Thus, epbl41l4a is expressed in tissues undergoing morphogenetic movements, suggesting a functional role of epbl41l4a during these processes.
Project description:Transient receptor potential (TRP) cation channel genes code for an extensive family of conserved proteins responsible for a variety of physiological processes, including sensory perception, ion homeostasis, and chemical signal transduction. The TRP superfamily consists of seven subgroups, one of which is the transient receptor potential vanilloid (trpv) channel family. While trpv channels are relatively well studied in adult vertebrate organisms given their role in functions such as nociception, thermoregulation, and osmotic regulation in mature tissues and organ systems, relatively little is known regarding their function during embryonic development. Although there are some reports of the expression of specific trpv channels at particular stages in various organisms, there is currently no comprehensive analysis of trpv channels during embryogenesis. Here, performing in situ hybridization, we examined the spatiotemporal expression of trpv channel mRNA during early Xenopus laevis embryogenesis. Trpv channels exhibited unique patterns of embryonic expression at distinct locations including the trigeminal ganglia, spinal cord, cement gland, otic vesicle, optic vesicle, nasal placode, notochord, tailbud, proctodeum, branchial arches, epithelium, somite and the animal pole during early development. We have also observed the colocalization of trpv channels at the animal pole (trpv 2/4), trigeminal ganglia (trpv 1/2), and epithelium (trpv 5/6). These localization patterns suggest that trpv channels may play diverse roles during early embryonic development.