Unknown

Dataset Information

0

Lipopeptides activate Gi-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells.


ABSTRACT: Synthetic lipopeptides activate superoxide-anion (O2-) formation in human neutrophils in a pertussis-toxin (PTX)-sensitive manner, suggesting the involvement of G-proteins of the Gi family in the signal-transduction pathway. We compared G-protein activation by lipopeptides and the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) in dibutyryl-cyclic-AMP-differentiated HL-60 cells. The lipopeptide (2S)-2-palmitoylamino-6-palmitoyloxymethyl-7-palmitoyloxy heptanoyl-SK4 (Pam3AhhSK4) and fMLP activated high-affinity GTPase, i.e. the enzymic activity of G-protein alpha-subunits, in HL-60 membranes in a time- and protein-dependent manner, but they had no effect on Mg(2+)-ATPase and Na+/K(+)-ATPase. Pam3AhhSK4 and fMLP increased Vmax. of GTP hydrolysis. Pam3AhhSK4 activated GTP hydrolysis with half-maximal and maximal effects at about 2 microM and 10 microM respectively. Other lipopeptides activated GTP hydrolysis as well. Lipopeptides were less effective than fMLP to activate GTPase. In membranes from PTX-treated cells, the stimulatory effects of lipopeptides and fMLP on GTPase were abolished. In N-ethylmaleimide-treated membranes, the relative stimulatory effect of Pam3AhhSK4 on GTP hydrolysis was enhanced, whereas that of fMLP was diminished. fMLP and Pam3AhhSK4 activated GTPase in an over-additive manner in N-ethylmaleimide-treated membranes. Unlike fMLP, Pam3AhhSK4 did not enhance incorporation of GTP azidoanilide into, and cholera-toxin-catalysed ADP-ribosylation of Gi-protein alpha-subunits in, HL-60 membranes and did not induce rises in cytosolic Ca2+ concentration. Pam3AhhSK4 and fMLP stimulated phosphatidic acid formation in a PTX-sensitive manner. Pam3AhhSK4 itself did not activate O2- formation, but potentiated the stimulatory effects of fMLP. Our data suggest that (i) lipopeptides activate the GTPase of Gi-proteins, (ii) lipopeptides and fMLP activate Gi-proteins differently, (iii) lipopeptides stimulate phospholipase D via Gi-proteins, and (iv) phosphatidic acid formation is not sufficient for activation of O2- formation.

SUBMITTER: Klinker JF 

PROVIDER: S-EPMC1137680 | biostudies-other | 1993 Nov

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7804120 | biostudies-literature
| S-EPMC3807221 | biostudies-literature
| S-EPMC6638491 | biostudies-literature
| S-EPMC1153626 | biostudies-other
| S-EPMC4005916 | biostudies-literature
| S-EPMC6379482 | biostudies-literature