Characterization of the partially reduced cyanide-inhibited derivative of cytochrome c oxidase by optical, electron-paramagnetic-resonance and magnetic-circular-dichroism spectroscopy.
Ontology highlight
ABSTRACT: Optical. e.p.r. and near-infrared low-temperature m.c.d. (magnetic-circular-dichroism) spectroscopy were used to characterize the partially reduced cyanide-inhibited derivative of cytochrome c oxidase produced by anaerobic reductive titration with dithionite. The reductions of cytochrome a3+ and Cu2+a were followed by observation of the e.p.r. signals at g = 3.03, 2.21 and 1.5 and at g = 2.18, 2.03 and 1.99. As reduction proceeds new e.p.r. signals (g = 3.58 and 1.56) appear that quantify to give one haem per enzyme unit when a small excess of dithionite has been titrated in. The e.p.r. signal of the Cu2+a titrates in parallel with the disappearance of the band and 820nm in the optical absorption spectrum. The near-infrared m.c.d. spectrum shows the presence of the low-spin ferric haem, a3+, in the oxidized state of the enzyme, as a well-resolved positive peak at 1650nm. As reduction proceeds this band is replaced by one at 1550nm due to haem a3+(3)--CN in the partially reduced state. Hence as haem a3+(3)--CN becomes e.p.r.-detectable it also shows a near-infrared m.c.d. spectrum characteristic of a low-spin ferric haem. It is concluded that the partially reduced state of cyanide-inhibited cytochrome c oxidase contains a2+ . Cu+a . a3+(3)--CN . Cu+a3.
Project description:Glucagon, a 29-amino acid polypeptide hormone, is an essential therapeutic agent used in the emergency treatment of hypoglycemia. However, glucagon is inherently unstable in aqueous solution. While glucagon equilibrates between unordered and the secondary α-helix state in solution, it can quickly transform into a different secondary β-sheet-rich amyloid-like fibril/oligomer structure under various conditions. Since changes in the secondary structure of glucagon can cause significant impacts, structure analysis is necessary and essential to assess the safety of the product. This study analyzed the secondary structure of glucagon products at the release and at the expiry using circular dichroism spectroscopy (CD) and 2D Nuclear Overhauser effect spectroscopy (2D NOESY). In order to also determine if structural differences exist between glucagon produced through different manufacturing processes, synthetic and recombinant glucagon products were used and compared. The CD results indicated that for all release and expired glucagon products, the structure compositions were 14 to 16% α-helix, 17 to 19% β-strand, 14 to 15% Turn, and 53 to 54% Unordered. This was consistent with the 2D NOESY analysis which showed that both products had an approximate α-helix composition of 14 to 17%. Overall, there were no significant differences in terms of the secondary structure between synthetic and recombinant glucagon products both at the release and at the expiry.
Project description:Cytochrome c peroxidases (bCcPs) are diheme enzymes required for the reduction of H2O2 to water in bacteria. There are two classes of bCcPs: one is active in the diferric form (constitutively active), and the other requires the reduction of the high-potential heme (H-heme) before catalysis commences (reductively activated) at the low-potential heme (L-heme). To improve our understanding of the mechanisms and heme electronic structures of these different bCcPs, a constitutively active bCcP from Nitrosomonas europaea ( NeCcP) and a reductively activated bCcP from Shewanella oneidensis ( SoCcP) were characterized in both the diferric and semireduced states by electron paramagnetic resonance (EPR), resonance Raman (rRaman), and magnetic circular dichroism (MCD) spectroscopy. In contrast to some previous crystallographic studies, EPR and rRaman spectra do not indicate the presence of significant amounts of a five-coordinate, high-spin ferric heme in NeCcP or SoCcP in either the diferric or semireduced state in solution. This observation points toward a mechanism of activation in which the active site L-heme is not in a static, five-coordinate state but where the activation is more subtle and likely involves formation of a six-coordinate hydroxo complex, which could then react with hydrogen peroxide in an acid-base-type reaction to create Compound 0, the ferric hydroperoxo complex. This mechanism lies in stark contrast to the diheme enzyme MauG that exhibits a static, five-coordinate open heme site at the peroxidatic heme and that forms a more stable FeIV═O intermediate.
Project description:A curated library of circular dichroism spectra of 23 G-quadruplexes of known structure was built and analyzed. The goal of this study was to use this reference library to develop an algorithm to derive quantitative estimates of the secondary structure content of quadruplexes from their experimental CD spectra. Principal component analysis and singular value decomposition were used to characterize the reference spectral library. CD spectra were successfully fit to obtain estimates of the amounts of base steps in anti-anti, syn-anti or anti-syn conformations, in diagonal or lateral loops, or in other conformations. The results show that CD spectra of nucleic acids can be analyzed to obtain quantitative structural information about secondary structure content in an analogous way to methods used to analyze protein CD spectra.
Project description:Intrinsically disordered proteins lack a stable tertiary structure and form dynamic conformational ensembles due to their characteristic physicochemical properties and amino acid composition. They are abundant in nature and responsible for a large variety of cellular functions. While numerous bioinformatics tools have been developed for in silico disorder prediction in the last decades, there is a need for experimental methods to verify the disordered state. CD spectroscopy is widely used for protein secondary structure analysis. It is usable in a wide concentration range under various buffer conditions. Even without providing high-resolution information, it is especially useful when NMR, X-ray, or other techniques are problematic or one simply needs a fast technique to verify the structure of proteins. Here, we propose an automatized binary disorder-order classification method by analyzing far-UV CD spectroscopy data. The method needs CD data at only three wavelength points, making high-throughput data collection possible. The mathematical analysis applies the k-nearest neighbor algorithm with cosine distance function, which is independent of the spectral amplitude and thus free of concentration determination errors. Moreover, the method can be used even for strong absorbing samples, such as the case of crowded environmental conditions, if the spectrum can be recorded down to the wavelength of 212 nm. We believe the classification method will be useful in identifying disorder and will also facilitate the growth of experimental data in IDP databases. The method is implemented on a webserver and freely available for academic users.
Project description:This work demonstrates resonance Raman optical activity (RROA) spectra of three truncated vitamin B12 derivatives modified within the nucleotide loop. Since truncated cobalamins possess sufficiently high rotational strength in the range of ROA excitation (532 nm), it was possible to record their spectra in the resonance condition. They showed several distinct spectral features allowing for the distinguishing of studied compounds, in contrast to other methods, i.e., UV-Vis absorption, electronic circular dichroism, and resonance Raman spectroscopy. The improved capacity of the RROA method is based here on the excitation of molecules via more than two electronic states, giving rise to the bisignate RROA spectrum, significantly distinct from a parent Raman spectrum. This observation is an important step in the dissemination of using RROA spectroscopy in studying the complex structure of corrinoids which may prove crucial for a better understanding of their biological role.
Project description:FeMoco, a low-M(r) metal cluster of probable composition Fe7MoS9 complexed with homocitrate, has been extracted with N-methylformamide from the MoFe protein of the nitrogenase enzyme from Klebsiella pneumoniae. The binding of cyanide and thiols to the FeMoco cluster in its paramagnetic S = 3/2 oxidation level has been studied by low-temperature e.p.r. and magnetic-circular-dichroism (m.c.d.) spectroscopies. Cyanide binds to isolated FeMoco at more than one site, and causes changes in the g values form g = 4.6, 3.2, 2.0 to g = 4.29, 3.82, 2.02 E.p.r. competition studies indicate that one cyanide can be displaced by thiolate from one type of site. The form of the low-temperature m.c.d. spectrum is little changed by ligand binding, thus the basic cluster structure remains intact. However, when benzenethiol is bound, a new intense band (lambda 387 nm) is observed, indicating the generation of an increased ligand-to-cluster charge-transfer interaction.
Project description:A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains.
Project description:Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130?Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.
Project description:Steroid hormone molecules may exhibit very different functionalities based on the associated functional groups and their 3D arrangements in space, i.e., absolute configurations and conformations. Infrared (IR) and vibrational circular dichroism (VCD) spectra of four different steroid hormones, namely dehydroepiandrosterone (DHEA), 17α-methyltestosterone (MTTT), (16α,17)-epoxyprogesterone (Epoxy-P4), and dehydroepiandrosterone acetate (AcO-DHEA), were measured in deuterated dimethyl sulfoxide and some also in carbon tetrachloride. Extensive conformational searches were carried out using the recent developed conformer-rotamer ensemble sampling tool (CREST) which also accounts for solvent effects using an implicit solvation model. All the CREST conformational candidates were then reoptimized at the B3LYP-D3BJ/def2-TZVPD with the PCM of solvent. The good agreements between the experimental IR and VCD spectra and the theoretical simulations provide a conclusive information about their conformational distribution and absolute configurations. The experimental and theoretical IR and VCD spectra of AcO-DHEA in the carbonyl and alkene stretching region showed some discrepancies, and the possible causes related to solvent effects, large amplitude motions and levels of theory used in the modelling were explored in detail. As part of the investigation, additional calculations at the B3LYP-D3BJ/6-31++G (2d,p) and B3LYP-D3BJ/cc-pVTZ levels, as well as some 'mixed' calculations with the double-hybrid functional B2PLYP-D3 were also carried out. The results indicate that the double-hybrid functional is important for predicting the correct IR band pattern in the carbonyl and alkene stretching region.
Project description:The flexibility of a molecule has important consequences on its function and application. Vibrational Circular Dichroism (VCD) is intrinsically an excellent experimental technique to get a hold on this flexibility as it is highly sensitive to key conformational details and able to distinguish rapidly interconverting conformers. One of the major challenges in analyzing the spectra by comparison to theoretical predictions is the uncertainty in the computed energies of the multitude of conformations. This uncertainty also affects the reliability of the stereochemical assignment it is normally used for. We present here a novel approach that explicitly takes the energy uncertainties into account in a genetic algorithm based method that fits calculated to the experimental spectra. We show that this approach leads to significant improvements over previously used methodologies. Importantly, statistical validation studies provide quantitative measures for the reliability of relevant parameters used such as the energy uncertainty and the extent to which conformational heterogeneity can be determined. Similarly, quantitative measures can be obtained for the possibility that the flexibility that is introduced in the fit might lead to an incorrect assignment of the stereochemistry. These results break new ground for different techniques based on VCD to elucidate conformational flexibility.