A competitive labelling method for determining the ionization constants and reactivity of individual histidine residues in proteins. The histidines of -chymotrypsin.
Ontology highlight
ABSTRACT: A competitive labelling method (Kaplan et al., 1971), using tritiated 1-fluoro-2,4-dinitrobenzene as the labelling reagent, is described for determining the ionization constants and reactivities of individual histidine residues in proteins. When this method was applied to the two histidines of alpha-chymotrypsin, histidine-57 was found to have pK(a) 6.8 and a reactivity ten times that of alpha-N-acetyl-l-histidine. Histidine-40 had pK(a) 6.7 and a reactivity approximately six times that of alpha-N-acetyl-l-histidine. Between pH7.5 and 8 the reactivities of both histidines decrease simultaneously to approximately that of alpha-N-acetyl-l-histidine. The high reactivities of the histidines are attributed to hydrogen bonding, which increases the nucleophilicity of the imidazole ring. The sharp decrease in reactivity between pH7.5 and 8 is attributed to a conformational change that disrupts the hydrogen bonding by these residues. The reactivity data support the proposal of a charge-relay mechanism involving histidine-57 (Blow et al., 1969), which makes serine-195 more nucleophilic but indicates that this system is fully operative only in the enzyme-substate complex.
Project description:1. A method is described for determining the ionization constants and reactivities of individual amino groups in proteins. The principle is that in the presence of a trace amount of radioactive label, the various reactive groups in a protein molecule will compete for the label and the amount incorporated into any one group will be determined by its nucleophilicity, pK and micro-environment. The relative amounts of label incorporated into various groups will be proportional to their second-order rate constants and by comparing these rate constants with those expected on the basis of a linear free-energy relationship obtained with a series of standard compounds, the micro-environment can be defined for a particular amino group. 2. The method consists of treating a protein and an internal standard with a limiting amount of radioactive reagent and then with an excess of unlabelled reagent to yield a chemically homogeneous but heterogeneously labelled compound. After appropriate enzymic digestion peptides containing each labelled group are isolated and their rates of reaction, relative to the internal standard, are determined from their specific radioactivities. The entire procedure is repeated at several pH values. 3. When the method was applied to the amino groups of porcine elastase by using tritiated acetic anhydride as the labelling reagent, the N-terminus was found to have pK(a) 9.7 and a much lower than normal reactivity. Lysine-87 and lysine-224 were found to have pK(a) 10.3 and normal reactivities. At pH values greater than 10.5 there are discontinuities in all the titration curves, indicating that the entire molecule is undergoing a structural reorganization.
Project description:Cardiolipin is a phospholipid found in the inner mitochondrial membrane and in bacteria, and it is associated with many physiological functions. Cardiolipin has a dimeric structure consisting of two phosphatidyl residues connected by a glycerol bridge and four acyl chains, and therefore it can carry two negative charges. The pKa values of the phosphate groups have previously been reported to differ widely with pKa1 = 2.8 and pKa2 = 7.5-9.5. Still, there are several examples of experimental observations from cardiolipin-containing systems that do not fit with this dissociation behavior. Therefore, we have carried out pH-titration and titration calorimetric experiments on two synthetic cardiolipins, 1,1',2,2'-tetradecanoyl cardiolipin, CL (C14:0), and 1,1',2,2'-tetraoctadecenoyl cardiolipin, CL (C18:1). Our results show that both behave as strong dibasic acids with pKa1 about the same as the first pKa of phosphoric acid, 2.15, and pKa2 about one unit larger. The characterization of the acidic properties of cardiolipin is crucial for the understanding of the molecular organization in self-assembled systems that contain cardiolipin, and for their biological function.
Project description:The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.
Project description:A new method is described for plotting kinetic results for inhibited enzyme-catalysed reactions. It provides a simple way of determining the inhibition constant, K'(i), of an uncompetitive, mixed or non-competitive inhibitor.
Project description:Chemogenomics methods seek to characterize the interaction between drugs and biological systems and are an important guide for the selection of screening compounds. The acid/base character of drugs has a profound influence on their affinity for the receptor, on their absorption, distribution, metabolism, excretion and toxicity (ADMET) profile and the way the drug can be formulated. In particular, the charge state of a molecule greatly influences its lipophilicity and biopharmaceutical characteristics. This study investigates the acid/base profile of human small-molecule drugs, chemogenomics datasets and screening compounds including a natural products set. We estimate the acid-ionization constant (pK(a)) values of these compounds and determine the identity of the ionizable functional groups in each set. We find substantial differences in acid/base profiles of the chemogenomic classes. In many cases, these differences can be linked to the nature of the target binding site and the corresponding functional groups needed for recognition of the ligand. Clear differences are also observed between the acid/base characteristics of drugs and screening compounds. For example, the proportion of drugs containing a carboxylic acid was 20 %, in stark contrast to a value of 2.4 % for the screening set sample. The proportion of aliphatic amines was 27 % for drugs and only 3.4 % for screening compounds. This suggests that there is a mismatch between commercially available screening compounds and the compounds that are likely to interact with a given chemogenomic target family. Our analysis provides a guide for the selection of screening compounds to better target specific chemogenomic families with regard to the overall balance of acids, bases and pK(a) distributions.
Project description:A member of the family of hematopoietic cytokines human prolactin (hPRL) is a 23k kDa polypeptide hormone, which displays pH dependence in its structural and functional properties. The binding affinity of hPRL for the extracellular domain of its receptor decreases 500-fold over the relatively narrow, physiologic pH range from 8 to 6; whereas, the affinity of human growth hormone (hGH), its closest evolutionary cousin, does not. Similarly, the structural stability of hPRL decreases from 7.6 to 5.6 kcal/mol from pH 8 to 6, respectively, whereas the stability of hGH is slightly increased over this same pH range. hPRL contains nine histidines, compared with hGH's three, and they are likely responsible for hPRL's pH-dependent behavior. We have systematically mutated each of hPRL's histidines to alanine and measured the effect on pH-dependent global stability. Surprisingly, a vast majority of these mutations stabilize the native protein, by as much as 2-3 kcal/mol. Changes in the overall pH dependence to hPRL global stability can be rationalized according to the predominant structural interactions of individual histidines in the hPRL tertiary structure. Using double mutant cycles, we detect large interaction free energies within a cluster of nearby histidines, which are both stabilizing and destabilizing to the native state. Finally, by comparing the structural locations of hPRL's nine histidines with their homologous residues in hGH, we speculate on the evolutionary role of replacing structurally stabilizing residues with histidine to introduce pH dependence to cytokine function.
Project description:Dimensionless apparent ionization constants of charged low-molecular-weight species may be obtained from paper-electrophoretic data at 20-25 degrees C with buffers (I0.1-0.5) of measured pH (1.5-12.5) containing oxalate ions. Relative mobilities rather than absolute mobilities were measured by using glycerol and m-nitrobenzenesulphonate respectively as standards of zero and unit mobility. Application of the procedure to ionizations of adenine, adenosine, 2'-deoxyadenosine, 3'-deoxyadenosine, 3':5'-cyclic AMP, ADP, ADP-glucose-agrocin 84 and ATP is described.
Project description:The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (Kd), can be considered as one of the most important characteristics for any antibody-antigen pair. Many methods based on different technologies have been proposed and used to determine this value. However, since a very large number of publications and commercial datasheets do not include this information, significant obstacles in performing such measurements seem to exist. In other cases where such data are reported, the results have often proved to be unreliable. This situation may indicate that most of the technologies available today require a high level of expertise and effort that does not seem to be available in many laboratories. In this paper, we present a simple approach based on standard immunoassay technology that is easy and quick to perform. It relies on the effect that the molar IC50 approaches the Kd value in the case of infinitely small concentrations of the reagent concentrations. A two-dimensional dilution of the reagents leads to an asymptotic convergence to Kd. The approach has some similarity to the well-known checkerboard titration used for the optimization of immunoassays. A well-known antibody against the FLAG peptide, clone M2, was used as a model system and the results were compared with other methods. This approach could be used in any case where a competitive assay is available or can be developed. The determination of an affinity constant should belong to the crucial parameters in any quality control of antibody-related products and assays and should be mandatory in papers using immunochemical protocols.
Project description:Predicting how aqueous solvent modulates the conformational transitions and influences the pKa values that regulate the biological functions of biomolecules remains an unsolved challenge. To address this problem, we developed FDPB_MF, a rotamer repacking method that exhaustively samples side chain conformational space and rigorously calculates multibody protein-solvent interactions. FDPB_MF predicts the effects on pKa values of various solvent exposures, large ionic strength variations, strong energetic couplings, structural reorganizations and sequence mutations. The method achieves high accuracy, with root mean square deviations within 0.3 pH unit of the experimental values measured for turkey ovomucoid third domain, hen lysozyme, Bacillus circulans xylanase, and human and Escherichia coli thioredoxins. FDPB_MF provides a faithful, quantitative assessment of electrostatic interactions in biological macromolecules.
Project description:Histatin 5 is a histidine-rich, intrinsically disordered, multifunctional saliva protein known to act as a first line of defense against oral candidiasis caused by Candida albicans. An earlier study showed that, upon interaction with a common model bilayer, a protein cushion spontaneously forms underneath the bilayer. Our hypothesis is that this effect is of electrostatic origin and that the observed behavior is due to proton charge fluctuations of the histidines, promoting attractive electrostatic interactions between the positively charged proteins and the anionic surfaces, with concomitant counterion release. Here we are investigating the role of the histidines in more detail by defining a library of variants of the peptide, where the former have been replaced by the pH-insensitive amino acid glutamine. By using experimental techniques such as circular dichroism, small angle X-ray scattering, quartz crystal microbalance with dissipation monitoring, and neutron reflectometry, it was determined that changing the number of histidines in the peptide sequence did not affect the structure of the peptide dissolved in solution. However, it was shown to affect the penetration depth of the peptide into the bilayer, where all variants except the one with zero histidines were found below the bilayer. A decrease in the number of histidine from the original seven to zero decreases the ability of the peptide to penetrate the bilayer, and the peptide is then also found residing within the bilayer. We hypothesize that this is due to the ability of the histidines to charge titrate, which charges up the peptide, and enables it to penetrate and translocate through the lipid bilayer.