Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK/ERK activation.
Ontology highlight
ABSTRACT: Testicular germ cell tumours (TGCT) represent the most common malignancies in young males. Whereas in 1970s, the survival rate in patients with metastatic testicular tumours was only 5%, these days, 80% of the patients treated by modern chemotherapy will survive their disease. The drug that revolutionised the cure rate for patients with metastatic testicular tumours was cisdiamminedichloroplatinum (cisplatin, CDDP). In vitro experiments on neoplastic germ cell lines showed that their exquisite sensitivity to CDDP could be attributed to p53-dependent and -independent pathways. Applying cDNA macroarray, semiquantitative RT-PCR and Western blot analyses, blocking experiments, caspase activity assays, and morphological methods, we sought here to define the p53-independent pathway(s) involved in the CDDP-induced apoptosis. For this purpose, we used the human TGCT cell line NCCIT, the mutated p53 of which is known to remain inactive during the course of CDDP-induced apoptosis. Our experiments showed that within hours of CDDP application, two prototype members of the 'mitogen-activated protein kinase' (MAPK) family, designated 'MAPK ERK kinase' (MEK) and 'extracellular signal-regulated kinase' (ERK), were dually phosphorylated and caspase-3 became active. Functional assays using MEK inhibitors demonstrated that the phosphorylation of MEK and ERK was required for the activation of caspase-3 as the executing caspase. Interestingly, experiments with the human malignant germ cell line NTERA, which is known to possess wild-type p53, revealed the same results. Thus, our data suggest that CDDP mediates its p53-independent apoptosis-inducing effect on the malignant human testicular germ cells--at least partially--through activation of the MEK-ERK signalling pathway. July 2004
Project description:Testicular germ cell tumors (TGCTs) represent a well curable malignity due to their exceptional response to cisplatin (CDDP). Despite remarkable treatment results, approximately 5% of TGCT patients develop CDDP resistance and die. Exceptional curability makes TGCTs a highly valuable model system for studying the molecular mechanisms of CDDP sensitivity. Our study was aimed at revealing difference in gene expression between the CDDP-resistant and -sensitive TGCT cell lines, and hence at identifying candidate genes that could serve as potential biomarkers of CDDP response. Using gene expression array, we identified 281 genes that are differentially expressed in CDDP-resistant compared to -sensitive TGCT cell lines. The expression of 25 genes with the highest fold change was validated by RT-qPCR. Of them, DNMT3L, GAL, IGFBP2, IGFBP7, L1TD1, NANOG, NTF3, POU5F1, SOX2, WNT6, ZFP42, ID2, PCP4, SLC40A1 and TRIB3, displayed comparable expression change in gene expression array and RT-qPCR, when all CDDP-resistant TGCT cell lines were pairwise combined with all -sensitive ones. Products of the identified genes are pluripotency factors, or are involved in processes, such as cell metabolism, proliferation or migration. We propose that, after clinical validation, these genes could serve as prognostic biomarkers for early detection of CDDP response in TGCT patients.
Project description:KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation.
Project description:Cisplatin is used to treat a variety of malignancies, including testicular germ cell tumours (TGCTs). Although cisplatin-based chemotherapy yields high response rates, a subset of patients develop cisplatin resistance, limiting treatment options and worsening prognosis. Therefore, there is a high clinical need for new therapeutic strategies targeting cisplatin-resistant TGCTs. MicroRNA-371a-3p (miR-371), the new serum biomarker for TGCTs, shows significantly increased expression in cisplatin-resistant TGCT cell lines compared to sensitive parental cell lines. However, the functional impact of miR-371 on cisplatin sensitivity has not been investigated yet. To evaluate the impact of miR-371 on cisplatin sensitivity, antagomirs were used to inhibit miR-371 expression, resulting in a > 98% decrease in miR-371 expression. Cisplatin sensitivity was significantly increased after miR-371 inhibition in cisplatin-resistant and corresponding parental TGCT cell lines, indicating a strongly reduced viability and increased apoptosis after cisplatin treatment in miR-371-inhibited cells. Our results suggest that miR-371 may contribute to the development of cisplatin resistance in TGCTs. Interfering with miR-371 expression can increase the cisplatin sensitivity of tumour cells, which may represent a promising approach to improve future therapeutic outcomes in patients with TGCTs, especially those with cisplatin-resistant disease.
Project description:The emergence of cisplatin (CDDP) resistance is the main cause of treatment failure and death in patients with testicular germ cell tumors (TGCT), but its biologic background is poorly understood. To study the molecular basis of CDDP resistance in TGCT we prepared and sequenced CDDP-exposed TGCT cell lines as well as 31 primary patients' samples. Long-term exposure to CDDP increased the CDDP resistance 10 times in the NCCIT cell line, while no major resistance was achieved in Tera-2. Development of CDDP resistance was accompanied by changes in the cell cycle (increase in G1 and decrease in S-fraction), increased number of acquired mutations, of which 3 were present within ATRX gene, as well as changes in gene expression pattern. Copy number variation analysis showed, apart from obligatory gain of 12p, several other large-scale gains (chr 1, 17, 20, 21) and losses (chr X), with additional more CNVs found in CDDP-resistant cells (e.g., further losses on chr 1, 4, 18, and gain on chr 8). In the patients' samples, those who developed CDDP resistance and died of TGCT (2/31) showed high numbers of acquired aberrations, both SNPs and CNVs, and harbored mutations in genes potentially relevant to TGCT development (e.g., TRERF1, TFAP2C in one patient, MAP2K1 and NSD1 in another one). Among all primary tumor samples, the most commonly mutated gene was NSD1, affected in 9/31 patients. This gene encoding histone methyl transferase was also downregulated and identified among the 50 most differentially expressed genes in CDDP-resistant NCCIT cell line. Interestingly, 2/31 TGCT patients harbored mutations in the ATRX gene encoding a chromatin modifier that has been shown to have a critical function in sexual differentiation. Our research newly highlights its probable involvement also in testicular tumors. Both findings support the emerging role of altered epigenetic gene regulation in TGCT and CDDP resistance development.
Project description:Lung cancer management remains a challenge due to its asymptomatic and late presentation when it is metastatic. The clinical response to the first-line platinum-based chemotherapy in patients with advanced lung cancer is disappointing due to the development of chemoresistance. Chemoresistance is a complex phenomenon. Mechanistic research using experimental models has yielded limited clinical results to help increase understanding for overcoming resistance. While the role of lung CSCs in conferring multidrug resistance has been postulated, experimental evidence remains associative and lacks in depth mechanistic inquisition. In the present study, using mouse and human lung adenocarcinoma cell lines and their respective paired CSC derivative cell lines that we generated, we identified cancer stem cell component of lung adenocarcinoma as the source that confers multidrug resistance phenotype. Mechanistically, Gstp1 confers cisplatin resistance in mouse and human lung CSC models, both in vitro and in vivo. Further, transcriptional activation of Gstp1 expression by MEK/ERK signaling underlies cisplatin resistance in lung CSC cells. Moreover, we show that GSTP1 expression is a poor diagnostic and prognostic marker for human lung adenocarcinoma, thus is of high clinical relevance. Taken together, we have provided mechanistic understanding of the lung CSC in mediating chemoresistance.
Project description:Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Project description:Novel treatment options are needed for testicular germ cell tumor (TGCT) patients, particularly important for those showing or developing cisplatin resistance, the major cause of cancer-related deaths. As TGCTs pathobiology is highly related to epigenetic (de)regulation, epidrugs are potentially effective therapies. Hence, we sought to explore, for the first time, the effect of the two most recently FDA-approved HDAC inhibitors (HDACis), belinostat and panobinostat, in (T)GCT cell lines including those resistant to cisplatin. In silico results were validated in 261 patient samples and differential expression of HDACs was also observed across cell lines. Belinostat and panobinostat reduced cell viability in both cisplatin-sensitive cells (NCCIT-P, 2102Ep-P, and NT2-P) and, importantly, also in matched cisplatin-resistant subclones (NCCIT-R, 2102Ep-R, and NT2-R), with IC50s in the low nanomolar range for all cell lines. Treatment of NCCIT-R with both drugs increased acetylation, induced cell cycle arrest, reduced proliferation, decreased Ki67 index, and increased p21, while increasing cell death by apoptosis, with upregulation of cleaved caspase 3. These findings support the effectiveness of HDACis for treating TGCT patients in general, including those developing cisplatin resistance. Future studies should explore them as single or combination agents.
Project description:Gonadotropin-regulated testicular helicase (GRTH)/DDX25 is an essential post-transcriptional regulator of spermatogenesis. In GRTH null mice severe apoptosis was observed in spermatocytes entering the metaphase of meiosis. Pro- and anti-apoptotic factors were found to be under GRTH regulation in comparative studies of spermatocytes from wild type and GRTH(-/-) knock-out (KO) mice. KO mice displayed decreased levels of Bcl-2 and Bcl-xL (anti-apoptotic factors), an increase in Bid, Bak, and Bad (pro-apoptotic), reduced phospho-Bad, and release of cytochrome c. Also, an increase on Smac, a competitor of inhibitor apoptotic proteins that release caspases, was observed. These changes caused an increase in cleavage of caspases 9 and 3, activation of caspase 3 and increases in cleavage products of PARP. The half-life of caspase 3 transcripts was markedly increased in KO, indicating that GRTH had a negative role on its mRNA stability. IkappaBalpha, which sequesters NF-kappaB from its transcriptional activation of pro-apoptotic genes, was highly elevated in KO, and its phospho-form, which promotes its dissociation, was reduced. The increase of HDAC1 and abolition of p300 expression in KO indicated a nuclear action of GRTH on the NF-kappaB-mediated transcription of anti-apoptotic genes. It also regulates the associated death domain pathway and caspase 8-mediated events. GRTH-mediated apoptotic regulation was further indicated by its selective binding to pro- and anti-apoptotic mRNAs. These studies have demonstrated that GRTH, as a component of mRNP particles, acts as a negative regulator of the tumor necrosis factor receptor 1 and caspase pathways and promotes NF-kappaB function to control apoptosis in spermatocytes of adult mice.
Project description:The testis is an organ that maintains an immune suppressive environment. We previously revealed that exposure of pre-pubertal rats to an acute dose of a well-described Sertoli cell toxicant, mono-(2-ethylhexyl) phthalate (MEHP), leads to an accumulation of CD11b+ immune cells in the testicular interstitial space that closely correlates with a robust incidence of germ cell (GC) apoptosis. Here, we test the hypothesis that the infiltrating immune cells contribute to GC apoptosis. Postnatal day 28 Fischer rats that received an oral dose of 700 mg/kg MEHP showed a significant infiltration of both CD11bc+/CD68+/CD163- macrophages and neutrophils. The infiltration peaked at 12 h, but had reduced by 48 h. Testicular macrophages from MEHP-treated rats showed significantly upregulated expression of Tnfa and Il6, and the Arg1/Nos2 ratio was reduced compared to controls. However, small increases in anti-inflammatory genes Il10 and Tgfb1 were also observed. Depletion of circulating monocytes with clodronate liposomes prior to MEHP treatment reduced the macrophage influx into the testis, but did not lower GC apoptosis. Additionally, depletion of neutrophils using an anti-polymorphonuclear cell antibody prevented both macrophage and neutrophil infiltration into the testis, and also did not affect GC apoptosis. Together, these results show that exposure to MEHP leads to a rapid and temporary influx of pro-inflammatory monocytes and neutrophils in the interstitium of the testis. However, with this acute dosing paradigm, these infiltrating leukocytes do not appear to contribute to MEHP-induced testicular GC apoptosis leaving the functional significance of these infiltrating cells in the pathogenesis of MEHP-induced testicular injury unresolved.
Project description:BackgroundWe compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance.MethodsThree cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin.ResultsAltogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a/-100/-145 (up to 10-fold down-regulated).ConclusionExamining almost all known human micro-RNA species confirmed the miR-371-373 cluster as a promising target for explaining cisplatin resistance, potentially by counteracting wild-type P53 induced senescence or linking it with the potency to differentiate. Moreover, we describe for the first time an association of the up-regulation of micro-RNA species such as hsa-miR-512-3p/-515/-517/-518/-525 and down-regulation of hsa-miR-99a/-100/-145 with a cisplatin resistant phenotype in human germ cell tumors. Further functional analyses are warranted to gain insight into their role in drug resistance.