Sciatic nerve injury associated with acetabular fractures.
Ontology highlight
ABSTRACT: Sciatic nerve injuries associated with acetabular fractures may be a result of the initial trauma or injury at the time of surgical reconstruction. Patients may present with a broad range of symptoms ranging from radiculopathy to foot drop. There are several posttraumatic, perioperative, and postoperative causes for sciatic nerve palsy including fracture-dislocation of the hip joint, excessive tension or inappropriate placement of retractors, instrument- or implant-related complications, heterotopic ossification, hematoma, and scarring. Natural history studies suggest that nerve recovery depends on several factors. Prevention requires attention to intraoperative limb positioning, retractor placement, and instrumentation. Somatosensory evoked potentials and spontaneous electromyography may help minimize iatrogenic nerve injury. Heterotopic ossification prophylaxis can help reduce delayed sciatic nerve entrapment. Reports on sciatic nerve decompression are not uniformly consistent but appear to have better outcomes for sensory than motor neuropathy.
Project description:BackgroundWhile sciatic nerve injury has been described as a complication of acetabular fractures, iatrogenic nerve injury remains sparsely reported. This study aims to assess iatrogenic sciatic nerve injuries occurring during acetabular fracture surgery, tracking their neurological recovery and clinical outcomes, and investigating any correlation between recovery and the severity of neurologic injury to facilitate physicians in providing prediction of prognosis.Case presentationWe present two cases of male patients, aged 56 and 22, who developed sciatic palsy due to iatrogenic nerve injury during acetabular fracture surgery. Iatrogenic sciatic nerve injury resulted from operatively treated acetabular fractures. Surgical exploration, involving internal fixation removal and nerve decompression, successfully alleviated symptoms in both cases postoperatively. At the latest follow-up, one patient achieved full recovery with excellent function, while the other exhibited residual deficits at the L5/S1 root level along with minimal pain.ConclusionSciatic nerve injury likely stemmed from reduction techniques and internal fixation procedures for the posterior column, particularly when performed with the hip flexed, thereby placing tension on the sciatic nerve. Our case reports underscore the significance of liberal utilization of electrophysiologic examinations and intraoperative monitoring for the prediction of prognosis. Surgical exploration, encompassing internal fixation removal and nerve decompression, represents an effective intervention for resolving sciatic palsy, encompassing both sensory neuropathy and motor symptoms.
Project description:Sciatic nerve damage is a well-known complication that occurs in 1.5% of patients after primary total hip arthroplasty and in 8% after revision total hip arthroplasty. Yet when considering re-revision arthroplasty and acetabular cage implantation, incidence and management remain unclear. This case report describes a young female patient with sciatic nerve impingement after acetabular cage implantation. Her primary complaint was shooting sciatic left leg pain, worsening on ambulation and when seated. A complete workup was negative for spinal impingement or infection, and axonal nerve damage was confirmed through nerve conduction studies. The intraoperative findings showed that it was the acetabular cage rim that stretched the sciatic nerve. The rim was adjusted using a diamond burr to provide a specific solution without sacrificing the acetabular anchorage. Postoperative findings showed an excellent return to previous mobility and resolution of pain. This case provides a rare example of sciatic nerve impingement, showing that nerve palsies in the revision total hip arthroplasty setting may require patient-specific solutions.
Project description:We encountered late hardware-induced sciatic nerve lesions after acetabular revision in six patients. There were five female patients and one male patient. The mean age of the patients at the time of index acetabular revision was 59.3 years (range, 42-76 years). The interval from the index acetabular revision to the onset of sciatic nerve symptoms averaged 9.4 months (range, 4-16 months) and that from the onset of symptoms to nerve release was 11.3 months (range, 8-13 months), except in two patients with intermittent symptoms in which it was 9 and 10.5 years, respectively. Sciatic nerve release was successful in two patients, but in four patients, the nerve had been partly or entirely cut by the metallic hardware resulting in a permanent deficit. The minimum followup was 2 years (mean, 4 years; range, 2-7 years). Mechanical irritation should be suspected in the case of any late sign of peroneal neuropathy after acetabular revision with a macrocup or antiprotrusion device, and plate fixation of the posterior column. We recommend exploration and nerve release before a permanent lesion of the nerve has developed.Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Project description:JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Project description:BackgroundCytokines are essential cellular modulators of various physiological and pathological activities, including peripheral nerve repair and regeneration. However, the molecular changes of these cellular mediators after peripheral nerve injury are still unclear. This study aimed to identify cytokines critical for the regenerative process of injured peripheral nerves.MethodsThe sequencing data of the injured nerve stumps and the dorsal root ganglia (DRGs) of Sprague-Dawley (SD) rats subjected to sciatic nerve (SN) crush injury were analyzed to determine the expression patterns of genes coding for cytokines. PCR was used to validate the accuracy of the sequencing data.ResultsA total of 46, 52, and 54 upstream cytokines were differentially expressed in the SNs at 1 day, 4 days, and 7 days after nerve injury. A total of 25, 28, and 34 upstream cytokines were differentially expressed in the DRGs at these time points. The expression patterns of some essential upstream cytokines are displayed in a heatmap and were validated by PCR. Bioinformatic analysis of these differentially expressed upstream cytokines after nerve injury demonstrated that inflammatory and immune responses were significantly involved.ConclusionsIn summary, these findings provide an overview of the dynamic changes in cytokines in the SNs and DRGs at different time points after nerve crush injury in rats, elucidate the biological processes of differentially expressed cytokines, especially the important roles in inflammatory and immune responses after peripheral nerve injury, and thus might contribute to the identification of potential treatments for peripheral nerve repair and regeneration.
Project description:BackgroundSciatic nerve injuries following total hip arthroplasty are disabling complications. Although degrees of injury are variable from neuropraxia to neurotmesis, mechanical irritation of sciatic nerve might be occurred by protruding hardware. This case shows endoscopic decompression for protruded acetabular screw irritating sciatic nerve, the techniques described herein may permit broader arthroscopic/endoscopic applications for management of complications after reconstructive hip surgery.Case presentationAn 80-year-old man complained of severe pain and paresthesias following acetabular component revision surgery. Physical findings included right buttock pain with radiating pain to lower extremity. Radiographs and computed tomography imaging showed that the sharp end of protruded screw invaded greater sciatic foramen anterior to posterior and distal to proximal direction at sciatic notch level. A protruding tip of the acetabular screw at the sciatic notch was decompressed by use of techniques gained from experience performing endoscopic sciatic nerve decompression. The pre-operative pain and paresthesias resolved post-operatively after recovering from anesthesia.ConclusionsThis case report describes the first documented endoscopic resection of the tip of the acetabular screw irritating sciatic nerve after total hip arthroplasty. If endoscopic resection of an offending acetabular screw can be performed in a safe and minimally invasive manner, one can envision a future expansion of the role of hip arthroscopic surgery in several complications management after total hip arthroplasty.
Project description:The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5-3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5-6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5-8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5-6.5- and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit β-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
Project description:Several studies have shown that dexmedetomidine (DXM), a selective ?2-adrenoceptor agonist, also has neuroprotective effects. However, its effect on impaired peripheral nerve regeneration has not been studied.Forty-five Sprague-Dawley rats were randomly assigned to three groups: group 1 (control SHAM), group 2 (sciatic nerve injury?+?normal saline), and group 3 (sciatic nerve injury?+?DXM). The rats of group 3 were subdivided into the following three groups: DXM 0.5, 6, and 20??g·kg-1 (groups 3A, 3B, and 3C, resp.). The sciatic nerve injury was assessed for nerve regeneration at 2 and 6 weeks.There were no differences between groups 2 and 3 in their sciatic functional index (SFI) values or histological findings at 2 weeks postinjury. However, SFI differences were statistically significant at 6 weeks postinjury in group 3. The gross findings with H&E staining showed that the number of axons was higher in group 3 than in group 2. There was no histological difference according to the DXM concentration.The coincidental functional and histological assessment results of this study suggest that DXM for 6 weeks positively affects damaged peripheral nerves.
Project description:Sciatic nerve ligation was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from sciatic nerve 1 and 4 days after injury compared to naïve animals. Results show differences in sciatic nerve responses with normal aging. Total RNA taken from sciatic nerves from 2-month and 24-month old animals at either day 0, 1 and 4 after sciatic nerve crush injury.
Project description:Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools used to modulate neuronal excitability. We hypothesized that activation of excitatory (Gq) DREADD by its designer ligand, clozapine-N-oxide (CNO), would increase the excitability of neurons whose axons have been transected following peripheral nerve injury, and that this increase will lead to an enhanced functional recovery. The lateral gastrocnemius (LG) muscle of adult female Lewis rats was injected unilaterally with AAV9- hsyn- hM3Dq-mCherry (7.6 × 109 viral genomes/μL) to transduce Gq-DREADD expression in LG neurons. The contralateral LG muscle served as an uninjected control. No significant changes in either spontaneous EMG activity or electrically evoked direct muscle (M) responses were found in either muscle after injection of CNO (1 mg/kg, i.p.). The amplitude of monosynaptic H-reflexes in LG was increased after CNO treatment exclusively in muscles previously injected with virus, suggesting that Gq-DREADD activation increased neuronal excitability. After bilateral sciatic nerve transection and repair, additional rats were treated similarly with CNO for up to three days after injury. Electrophysiological data were collected at 2, 4 and 6 weeks after injury. Evoked EMG responses were observed as early as 2 weeks after injury only in Gq-DREADD expressing virus injected LG muscle. By 4 weeks after injury, both M-response and H-reflex amplitudes were significantly greater in muscles previously injected with viral vector than contralateral, uninjected muscles. Increases in the excitability of injured neurons produced by this novel use of Gq-DREADD were sufficient to promote an enhancement in functional recovery after a sciatic nerve injury.