Investigating the auditory enhancement phenomenon using behavioral temporal masking patterns.
Ontology highlight
ABSTRACT: A narrowband signal is subjected to less masking from a simultaneously presented notched masker if it is preceded by a precursor that occupies the same spectral region as the masker, a phenomenon referred to as enhancement. The present study investigated (i) the amount of enhancement for the detection of a narrowband noise added to a notched masker, and (ii) masking patterns associated with the detection of tone pips added to the narrowband signal. The resulting psychophysical data were compared to predictions generated using a model similar to the neural adaptation-of-inhibition model proposed by Nelson and Young [(2010b). J. Neurosci. 30, 6577-6587]. The amount of enhancement was measured as a function of the temporal separation between the precursor and masker in Experiment I, and as a function of precursor level in Experiment II. The model captured the temporal dynamics of psychophysical enhancement reasonably well for both the long-duration noise signals and the masking patterns. However, in contrast to psychophysical data which indicated reliable enhancement only when the precursor and masker shared the same levels, the model predicated enhancement at all precursor levels.
Project description:Among the many questions regarding the ability to effortlessly name musical notes without a reference, also known as absolute pitch, the neural processes by which this phenomenon operates are still a matter of debate. Although a perceptual subprocess is currently accepted by the literature, the participation of some aspects of auditory processing still needs to be determined. We conducted two experiments to investigate the relationship between absolute pitch and two aspects of auditory temporal processing, namely temporal resolution and backward masking. In the first experiment, musicians were organized into two groups according to the presence of absolute pitch, as determined by a pitch identification test, and compared regarding their performance in the Gaps-in-Noise test, a gap detection task for assessing temporal resolution. Despite the lack of statistically significant difference between the groups, the Gaps-in-Noise test measures were significant predictors of the measures for pitch naming precision, even after controlling for possible confounding variables. In the second experiment, another two groups of musicians with and without absolute pitch were submitted to the backward masking test, with no difference between the groups and no correlation between backward masking and absolute pitch measures. The results from both experiments suggest that only part of temporal processing is involved in absolute pitch, indicating that not all aspects of auditory perception are related to the perceptual subprocess. Possible explanations for these findings include the notable overlap of brain areas involved in both temporal resolution and absolute pitch, which is not present in the case of backward masking, and the relevance of temporal resolution to analyze the temporal fine structure of sound in pitch perception.
Project description:Multisensory enhancement, as a facilitation phenomenon, is responsible for superior behavioral performance when an individual is responding to cross-modal versus modality-specific stimuli. However, the event-related potential (ERP) counterparts of behavioral multisensory enhancement are not well known. We recorded ERPs and behavioral data from 14 healthy volunteers with three types of target stimuli (modality-specific, bimodal, and trimodal) to examine the spatio-temporal electrophysiological characteristics of multisensory enhancement by comparing behavioral data with ERPs. We found a strong correlation between P3 latency and behavioral performance in terms of reaction time (RT) (R = 0.98, P <0.001), suggesting that P3 latency constitutes a temporal measure of behavioral multisensory enhancement. In addition, a fast RT and short P3 latency were found when comparing the modality-specific visual target with the modality-specific auditory and somatosensory targets. Our results indicate that behavioral multisensory enhancement can be identified by the latency and source distribution of the P3 component. These findings may advance our understanding of the neuronal mechanisms of multisensory enhancement.
Project description:Self-recovery schemes identify and restore tampering, using as a reference a compressed representation of a signal embedded into itself. In addition, audio self-recovery must comply with a transparency threshold, adequate for applications such as on-line music distribution or speech transmission. In this manuscript, an audio self-recovery scheme is proposed. Auditory masking properties of the signals are used to determine the frequencies that better mask the embedding distortion. Frequencies in the Fourier domain are mapped to the intDCT domain for embedding and extraction of reference bits for signal restoration. The contribution of this work is the use of auditory masking properties for the frequency selection and the mapping to the intDCT domain. Experimental results demonstrate that the proposed scheme satisfies a threshold of -2 ODG, suitable for audio applications. The efficacy of the scheme, in terms of its restoration capabilities, is also shown.
Project description:In human and animal auditory perception the perceived quality of sound streams changes depending on the duration of inter-sound intervals (ISIs). Here, we studied whether adaptation and the precision of temporal coding in the auditory periphery reproduce general perceptual boundaries in the time domain near 20, 100, and 400 ms ISIs, the physiological origin of which are unknown. In four experiments, we recorded auditory brainstem responses with five wave peaks (P1 -P5) in response to acoustic models of communication calls of house mice, who perceived these calls with the mentioned boundaries. The newly introduced measure of average standard deviations of wave latencies of individual animals indicate the waves' temporal precision (latency jitter) mostly in the range of 30-100 μs, very similar to latency jitter of single neurons. Adaptation effects of response latencies and latency jitter were measured for ISIs of 10-1000 ms. Adaptation decreased with increasing ISI duration following exponential or linear (on a logarithmic scale) functions in the range of up to about 200 ms ISIs. Adaptation effects were specific for each processing level in the auditory system. The perceptual boundaries near 20-30 and 100 ms ISIs were reflected in significant adaptation of latencies together with increases of latency jitter at P2-P5 for ISIs < ~30 ms and at P5 for ISIs < ~100 ms, respectively. Adaptation effects occurred when frequencies in a sound stream were within the same critical band. Ongoing low-frequency components/formants in a sound enhanced (decrease of latencies) coding of high-frequency components/formants when the frequencies concerned different critical bands. The results are discussed in the context of coding multi-harmonic sounds and stop-consonants-vowel pairs in the auditory brainstem. Furthermore, latency data at P1 (cochlea level) offer a reasonable value for the base-to-apex cochlear travel time in the mouse (0.342 ms) that has not been determined experimentally.
Project description:Recent studies of auditory streaming have suggested that repeated synchronous onsets and offsets over time, referred to as "temporal coherence," provide a strong grouping cue between acoustic components, even when they are spectrally remote. This study uses a measure of auditory stream formation, based on comodulation masking release (CMR), to assess the conditions under which a loss of temporal coherence across frequency can lead to auditory stream segregation. The measure relies on the assumption that the CMR, produced by flanking bands remote from the masker and target frequency, only occurs if the masking and flanking bands form part of the same perceptual stream. The masking and flanking bands consisted of sequences of narrowband noise bursts, and the temporal coherence between the masking and flanking bursts was manipulated in two ways: (a) By introducing a fixed temporal offset between the flanking and masking bands that varied from zero to 60 ms and (b) by presenting the flanking and masking bursts at different temporal rates, so that the asynchronies varied from burst to burst. The results showed reduced CMR in all conditions where the flanking and masking bands were temporally incoherent, in line with expectations of the temporal coherence hypothesis.
Project description:Repetition reduces word duration. Explanations of this process have appealed to audience design, internal production mechanisms, and combinations thereof (e.g. Kahn & Arnold, 2015). Jacobs, Yiu, Watson, and Dell (2015) proposed the auditory feedback hypothesis, which states that speakers must hear a word, produced either by themselves or another speaker, in order for duration reduction on a subsequent production. We conducted a strong test of the auditory feedback hypothesis in two experiments, in which we used masked auditory feedback and whispering to prevent speakers from hearing themselves fully. Both experiments showed that despite limiting the sources of normal auditory feedback, repetition reduction was observed to equal extents in masked and unmasked conditions, suggesting that repetition reduction may be supported by multiple sources, such as somatosensory feedback and feedforward signals, depending on their availability.
Project description:The rapid advance of sequencing technology, coupled with improvements in molecular methods for obtaining genetic data from ancient sources, holds the promise of producing a wealth of genomic data from time-separated individuals. However, the population-genetic properties of time-structured samples have not been extensively explored. Here, we consider the implications of temporal sampling for analyses of genetic differentiation and use a temporal coalescent framework to show that complex historical events such as size reductions, population replacements, and transient genetic barriers between populations leave a footprint of genetic differentiation that can be traced through history using temporal samples. Our results emphasize explicit consideration of the temporal structure when making inferences and indicate that genomic data from ancient individuals will greatly increase our ability to reconstruct population history.
Project description:HypothesisThe hypothesis tested was that forward masking of the speech-evoked auditory brainstem response (sABR) increases peak latency as an inverse function of masker-signal interval (Δt), and that the overall persistence of forward masking is age dependent.BackgroundOlder listeners exhibit deficits in forward masking. If forward-masked sABRs provide an objective measure of the susceptibility of speech sounds to prior stimulation, then this provides a novel approach to examining the age dependence of temporal processing.MethodsA /da/ stimulus forward masked by speech-shaped noise (Δt = 4-64 ms) was used to measure sABRs in 10 younger and nine older participants. Forward masking of subsegments of the /da/ stimulus (Δt = 16 ms) and click trains (Δt = 0-64 ms) was also measured.ResultsForward-masked sABRs from young participants showed an increase in latency with decreasing Δt for the initial peak. Latency shifts for later peaks were smaller and more uniform. None of the peak latencies returned to baseline by Δt = 64 ms. Forward-masked /da/ subsegments showed peak latency shifts that did not depend simply on peak position, while forward-masked click trains showed latency shifts that were dependent on click position. The sABRs from older adults were less robust but confirmed the viability of the approach.ConclusionForward masking of the sABR provides an objective measure of the susceptibility of the auditory system to prior stimulation. Failure of recovery functions to return to baseline suggests an interaction between forward masking by the prior masker and temporal effects within the stimulus itself.
Project description:Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this "informational masking" are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50-250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex.
Project description:In sensory systems, representational features of increasing complexity emerge at successive stages of processing. In the mammalian auditory pathway, the clearest change from brainstem to cortex is defined by what is lost, not by what is gained, in that high-fidelity temporal coding becomes increasingly restricted to slower acoustic modulation rates.1,2 Here, we explore the idea that sluggish temporal processing is more than just an inability for fast processing, but instead reflects an emergent specialization for encoding sound features that unfold on very slow timescales.3,4 We performed simultaneous single unit ensemble recordings from three hierarchical stages of auditory processing in awake mice - the inferior colliculus (IC), medial geniculate body of the thalamus (MGB) and primary auditory cortex (A1). As expected, temporal coding of brief local intervals (0.001 - 0.1 s) separating consecutive noise bursts was robust in the IC and declined across MGB and A1. By contrast, slowly developing (∼1 s period) global rhythmic patterns of inter-burst interval sequences strongly modulated A1 spiking, were weakly captured by MGB neurons, and not at all by IC neurons. Shifts in stimulus regularity were not represented by changes in A1 spike rates, but rather in how the spikes were arranged in time. These findings show that low-level auditory neurons with fast timescales encode isolated sound features but not the longer gestalt, while the extended timescales in higher-level areas can facilitate sensitivity to slower contextual changes in the sensory environment.