A new method for determining the optimal CT threshold for extracting the upper airway.
Ontology highlight
ABSTRACT: OBJECTIVES: The purpose of this study was to evaluate the optimal upper threshold levels of a number of individuals and determine the most suitable upper threshold. METHODS: A phantom model and ten patients were used in this study. The phantom was made of acrylic resin and urethane resin and had nine pillar-shaped air spaces. The subjects were ten female patients with jaw deformities who were not affected by respiratory disease. The optimal threshold levels were determined using the "calculation of CT value disparities" (CCTD) technique, which we devised. In other words, the mean CT values along two lines (air space and soft tissue) were calculated and the optimal threshold level was determined as the level that produced the maximum difference between the CT values measured inside and outside of the air-space border. RESULTS: The optimal upper threshold levels of the nine phantom holes calculated using the CCTD technique in the front-on standing position and side-on standing position were -434 HU and -456 HU, respectively. The optimal upper threshold level of the ten patients calculated using the CCTD technique was -472 HU. The true threshold level of each patient was defined as the optimal threshold level calculated using the CCTD technique. The mean threshold level was defined as -472 HU. The absolute differences between the volume measurements obtained with these two measures were considered. Therefore, the no error values were -460 HU and -470 HU. CONCLUSIONS: We consider that the most suitable upper threshold level for extracting the airway is from -460 HU to -470 HU.
Project description:Selecting thresholds to convert continuous predictions of species distribution models proves critical for many real-world applications and model assessments. Prevalent threshold selection methods for presence-only data require unproven pseudo-absence data or subjective researchers' decisions. This study proposes a new method, Boyce-Threshold Quantile Regression (BTQR), to determine thresholds objectively without pseudo-absence data. We summarize that the mutation point is a typical shape feature of the predicted-to-expected (P/E) curve after reviewing relevant articles. Analysis based on source-sink theory suggests that this mutation point may represent a transition in habitat types and serve as an appropriate threshold. Threshold regression is introduced to accurately locate the mutation point. To validate the effectiveness of BTQR, we used four virtual species of varying prevalence and a real species with reliable distribution data. Six different species distribution models were employed to generate continuous suitability predictions. BTQR and nine other traditional methods transformed these continuous outputs into binary results. Comparative experiments show that BTQR has advantages in terms of accuracy, applicability, and consistency over the existing methods.
Project description:The anaerobic threshold (AT) is the point of the aerobic-to-anaerobic metabolic switch. Despite the many clinical applications of AT, this measurement requires sophisticated equipment and skills. Here, we investigated a simple measurement method for AT using percutaneous oxygen saturation (SpO2) and pulse rate (PR) with a pulse oximeter in a study of exercise stress on healthy volunteers. Twenty individuals (ten men and ten women) were included in the study. Various respiratory parameters, including AT, were measured using conventional analytical methods. The SpO2 threshold (ST) was calculated using the SpO2-Slope method. The mean ± standard deviations SpO2 at ST was 97.8% ± 0.3% in men and 99.0 ± 0.3% in women. The concordance and interchangeability between ST and various five different types of AT, the ventilatory equivalent for oxygen (VE/VO2_AT), V-Slope (V-Slope_AT), ventilatory equivalent (VE_AT), respiratory exchange ratio (R_AT), and partial pressure of end-tidal oxygen (PETO2_AT) were generally high, with positive correlation coefficients in the range of [0.68-0.80]. These findings suggest that the SpO2-Slope method with a pulse oximeter may be a useful and simple method to determine AT compared to conventional methods.
Project description:Airway hyperresponsiveness (AHR) has been proposed as a feature of pathogenesis of eosinophilic upper airway inflammation such as allergic rhinitis (AR). The measurement system for upper AHR (UAHR) in rodents is poorly developed, although measurements of nasal resistance have been reported. Here we assessed UAHR by direct measurement of swelling of the nasal mucosa induced by intranasal methacholine (MCh) using micro-computed tomography (micro-CT). Micro-CT analysis was performed in both naïve and ovalbumin-induced AR mice following intranasal administration of MCh. The nasal cavity was segmented into two-dimensional horizontal and axial planes, and the data for nasal mucosa were acquired for the region of interest threshold. Then, a ratio between the nasal mucosa area and nasal cavity area was calculated as nasal mucosa index. Using our novel method, nasal cavity structure was clearly identified on micro-CT, and dose-dependent increased swelling of the nasal mucosa was observed upon MCh treatment. Moreover, the nasal mucosa index was significantly increased in AR mice compared to controls following MCh treatment, while ovalbumin administration did not affect swelling of the nasal mucosa in either group. This UAHR following MCh treatment was completely reversed by pretreatment with glucocorticoids. This novel approach using micro-CT for investigating UAHR reflects a precise assessment system for swelling of the nasal mucosa following MCh treatment; it not only sheds light on the mechanism of AR but also contributes to the development of new therapeutic drugs in AR patients.
Project description:BackgroundFor neonates and children requiring decompression of tension pneumothorax, specific recommendations for the choice of needle type and size are missing. The aim of this retrospective study was to determine optimal length and diameter of needles for decompression of tension pneumothorax in paediatric patients.MethodsUtilizing computed tomography, we determined optimal length and diameter of needles to enable successful decompression and at the same time minimize risk of injury to intrathoracic structures and the intercostal vessels and nerve. Preexisting computed tomography scans of the chest were reviewed in children aged 0, 5 and 10 years. Chest wall thickness and width of the intercostal space were measured at the 4th intercostal space at the anterior axillary line (AAL) on both sides of the thorax. In each age group, three needles different in bore and length were evaluated regarding sufficient length for decompression and risk of injury to intrathoracic organs and the intercostal vessels and nerve.Results197 CT-scans were reviewed, of which 58 were excluded, resulting in a study population of 139 children and 278 measurements. Width of the intercostal space was small at 4th ICS AAL (0 years: 0.44 ± 0.13 cm; 5 years: 0.78 ± 0.22 cm; 10 years: 1.12 ± 0.36 cm). The ratio of decompression failure to risk of injury at 4th ICS AAL was most favourable for a 22G/2.5 cm catheter in infants (Decompression failure: right: 2%, left: 4%, Risk of injury: right: 14%, left: 24%), a 22G/2.5 cm or a 20G/3.2 cm catheter in 5-year-old children (20G/3.2 cm: Decompression failure: right: 2.1%, left: 0%, Risk of injury: right: 2.1%, left: 17%) and a 18G/4.5 cm needle in 10-year-old children (Decompression failure: right: 9.5%, left: 9.5%, Risk of injury: right: 7.1%, left: 11.9%).ConclusionsIn children aged 0, 5 and 10 years presenting with a tension pneumothorax, we recommend 22G/2.5 cm, 20G/3.2 cm and 18G/4.5 cm needles, respectively, for acute decompression.
Project description:BackgroundOSA is associated with changes in pharyngeal anatomy. The goal of this study was to objectively and reproducibly quantify pharyngeal anatomy by using digital morphometrics based on a laser ruler and to assess differences between subjects with OSA and control subjects and associations with the apnea-hypopnea index (AHI). To the best of our knowledge, this study is the first to use digital morphometrics to quantify intraoral risk factors for OSA.MethodsDigital photographs were obtained by using an intraoral laser ruler and digital camera in 318 control subjects (mean AHI, 4.2 events/hour) and 542 subjects with OSA (mean AHI, 39.2 events/hour).ResultsThe digital morphometric paradigm was validated and reproducible over time and camera distances. A larger modified Mallampati score and having a nonvisible airway were associated with a higher AHI, both unadjusted (P < .001) and controlling for age, sex, race, and BMI (P = .015 and P = .018, respectively). Measures of tongue size were larger in subjects with OSA vs control subjects in unadjusted models and controlling for age, sex, and race but nonsignificant controlling for BMI; similar results were observed with AHI severity. Multivariate regression suggests photography-based variables capture independent associations with OSA.ConclusionsMeasures of tongue size, airway visibility, and Mallampati scores were associated with increased OSA risk and severity. This study shows that digital morphometrics is an accurate, high-throughput, and noninvasive technique to identify anatomic OSA risk factors. Morphometrics may also provide a more reproducible and standardized measurement of the Mallampati score. Digital morphometrics represent an efficient and cost-effective method of examining intraoral crowding and tongue size when examining large populations, genetics, or screening for OSA.
Project description:Topic models have been successfully applied to information classification and retrieval. The difficulty in successfully applying these technologies is to select the appropriate number of topics for a given corpus. Selecting too few topics can result in information loss and topic omission, known as underfitting. Conversely, an excess of topics can introduce noise and complexity, resulting in overfitting. Therefore, this article considers the inter-class distance and proposes a new method to determine the number of topics based on clustering results, named average inter-class distance change rate (AICDR). AICDR employs the Ward's method to calculate inter-class distances, then calculates the average inter-class distance for different numbers of topics, and determines the optimal number of topics based on the average distance change rate. Experiments show that the number of topics determined by AICDR is more in line with the true classification of datasets, with high inter-class distance and low inter-class similarity, avoiding the phenomenon of topic overlap. AICDR is a technique predicated on clustering results to select the optimal number of topics and has strong adaptability to various topic models.
Project description:BackgroundDTI is sensitive to white matter (WM) microstructural damage and has been suggested as a surrogate marker for phase 2 clinical trials in cerebral small vessel disease (SVD). The study's objective is to establish the best way to analyse the diffusion-weighted imaging data in SVD for this purpose. The ideal method would be sensitive to change and predict dementia conversion, but also straightforward to implement and ideally automated. As part of the OPTIMAL collaboration, we evaluated five different DTI analysis strategies across six different cohorts with differing SVD severity.MethodsThose 5 strategies were: (1) conventional mean diffusivity WM histogram measure (MD median), (2) a principal component-derived measure based on conventional WM histogram measures (PC1), (3) peak width skeletonized mean diffusivity (PSMD), (4) diffusion tensor image segmentation θ (DSEG θ) and (5) a WM measure of global network efficiency (Geff). The association between each measure and cognitive function was tested using a linear regression model adjusted by clinical markers. Changes in the imaging measures over time were determined. In three cohort studies, repeated imaging data together with data on incident dementia were available. The association between the baseline measure, change measure and incident dementia conversion was examined using Cox proportional-hazard regression or logistic regression models. Sample size estimates for a hypothetical clinical trial were furthermore computed for each DTI analysis strategy.ResultsThere was a consistent cross-sectional association between the imaging measures and impaired cognitive function across all cohorts. All baseline measures predicted dementia conversion in severe SVD. In mild SVD, PC1, PSMD and Geff predicted dementia conversion. In MCI, all markers except Geff predicted dementia conversion. Baseline DTI was significantly different in patients converting to vascular dementia than to Alzheimer' s disease. Significant change in all measures was associated with dementia conversion in severe but not in mild SVD. The automatic and semi-automatic measures PSMD and DSEG θ required the lowest minimum sample sizes for a hypothetical clinical trial in single-centre sporadic SVD cohorts.ConclusionDTI parameters obtained from all analysis methods predicted dementia, and there was no clear winner amongst the different analysis strategies. The fully automated analysis provided by PSMD offers advantages particularly for large datasets.
Project description:Dihydromyricetin (DMY) is a kind of flavone. It has a variety of physiological effects, and its content in Ampelopsis grossedentata is as high as 35%. There are two shortcomings in the traditional batch extraction process commonly used in a laboratory: long extraction time and low extraction rate. In this study, a new chelating extraction method was proposed, that is, Zn2+ was introduced into the extraction and purification process to chelate with DMY, and the yield and purity were taken as evaluation indices for a comparative study with the traditional batch extraction method. In addition, 1H NMR, single-crystal X-ray diffraction, IR, and UV were used to analyze the product structure; thermogravimetry and differential thermal analysis was utilized to examine the thermal stability of DMY. The results were shown as follows. Compared with the batch extraction method, the chelation extraction method could effectively avoid the oxidation of DMY by air during the extraction and purification process, and the yield of the DMY also increased. Furthermore, this method was time-saving. Through investigating the extraction process and characterizing the structure and thermal stability of DMY, the chelating extraction method could be considered to provide a reference for commercial applications of DMY.
Project description:We present a practical method to control erosion and soil conservation for agrarian activity. The method consists of four steps: (1) analyse the erosive state (as a percentage of the area affected) and soil losses (in m3 ha-1) by means of visual indicators (physical features on the soil surface that have been formed by erosion) and analyse environmental factors (as possible erodibility factors); (2) determine the factors of erodibility; (3) calculate the erosion threshold (value of the erodibility factor beyond which effective control of erosion is achieved), by statistical analysis of the databases collected in the field; (4) verify this result by applying a qualitative assessment of erosive intensity, using visual indicators. The erosion threshold is of particular interest for practical purposes because it can be used to improve the planning of agricultural activity, from the standpoint of soil conservation, thus promoting sustainable land use. This study makes the following main contributions to knowledge in this field: •It presents a new method to address erosion control, based on determining the erosion threshold.•Appropriate environmental and management conditions for effective erosion control are identified.•The method is simple to apply, which facilitates its implementation.
Project description:ObjectivesTo evaluate the performance of 4-dimensional computed tomography (4D-CT) in assessing upper airway obstruction (UAO) in patients with Robin sequence (RS) and compare the accuracy and reliability of 4D-CT and flexible fiber-optic laryngoscopy (FFL).Study designProspective survey of retrospective clinical data.SettingSingle, tertiary care pediatric hospital.MethodsAt initial and 30-day time points, a multidisciplinary group of 11 clinicians who treat RS rated UAO severity in 32 sets of 4D-CT visualizations and FFL videos (dynamic modalities) and static CT images. Raters assessed UAO at the velopharynx and oropharynx (1 = none to 5 = complete) and noted confidence levels of each rating. Intraclass correlation and Krippendorff alpha were used to assess intra- and interrater reliability, respectively. Accuracy was assessed by comparing clinician ratings with quantitative percentage constriction (QPC) ratings, calculated based on 4D-CT airway cross-sectional area. Results were compared using Wilcoxon rank-sum and signed-rank tests.ResultsThere was similar intrarater agreement (moderate to substantial) with 4D-CT and FFL, and both demonstrated fair interrater agreement. Both modalities underestimated UAO severity, although 4D-CT ratings were significantly more accurate, as determined by QPC similarity, than FFL (-1.06 and -1.46 vs QPC ratings, P = .004). Overall confidence levels were similar for 4D-CT and FFL, but other specialists were significantly less confident in FFL ratings than were otolaryngologists (2.25 and 3.92, P < .0001).ConclusionAlthough 4D-CT may be more accurate in assessing the degree of UAO in patients with RS, 4D-CT and FFL assessments demonstrate similar reliability. Additionally, 4D-CT may be interpreted with greater confidence by nonotolaryngologists who care for these patients.