KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells.
Ontology highlight
ABSTRACT: Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.
Project description:Retinoic acid (RA) signal is involved in tooth development and osteogenic differentiation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) are one of the useful MSCs in tissue regeneration. However, the function of RA in osteo/odontogenic differentiation of DPSCs remains unclear. Here, we investigated the expression pattern of RA in miniature pig tooth germ and intervened in the RA signal during osteo/odontogenic differentiation of human DPSCs. Deciduous canine (DC) germs of miniature pigs were observed morphologically, and the expression patterns of RA were studied by in situ hybridization (ISH). Human DPSCs were isolated and cultured in osteogenic induction medium with or without RA or BMS 493, an inverse agonist of the pan-retinoic acid receptors (pan-RARs). Alkaline phosphatase (ALP) activity assays, alizarin red staining, quantitative calcium analysis, CCK8 assay, osteogenesis-related gene expression, and in vivo transplantation were conducted to determine the osteo/odontogenic differentiation potential and proliferation potential of DPSCs. We found that the expression of RARβ and CRABP2 decreased during crown calcification of DCs of miniature pigs. Activation of RA signal in vitro inhibited ALP activities and mineralization of human DPSCs and decreased the mRNA expression of ALP, osteocalcin, osteopontin, and a transcription factor, osterix. With BMS 493 treatment, the results were opposite. Interference in RA signal decreased the proliferation of DPSCs. In vivo transplantation experiments suggested that osteo/odontogenic differentiation potential of DPSCs was enhanced by inversing RA signal. Our results demonstrated that downregulation of RA signal promoted osteo/odontogenic differentiation of DPSCs and indicated a potential target pathway to improve tissue regeneration.
Project description:BackgroundInflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions. LL-37 is a natural cationic polypeptide that inhibits lipopolysaccharide (LPS) activity, enhances cytokine production, and promotes the migration of stem cells. However, the potential of LL-37 in regenerative endodontics remains unknown. This study aimed to investigate the regulatory role of LL-37 in promoting the migration and odontogenic differentiation of DPSCs within an inflammatory microenvironment. These findings establish an experimental foundation for the regenerative treatment of pulpitis and provide a scientific basis for its clinical application.Materials and methodsDPSCs were isolated via enzyme digestion combined with the tissue block adhesion method and identified via flow cytometry. The impact of LL-37 on the proliferation of DPSCs was evaluated via a CCK-8 assay. The recruitment of DPSCs was assessed through a transwell assay. The mRNA expression levels of inflammatory and aging-related genes were assessed via reverse transcription‒polymerase chain reaction (RT‒PCR), western blotting, and enzyme‒linked immunosorbent assay (ELISA). The odontogenic differentiation of DPSCs was assessed through alkaline phosphatase (ALP) staining, alizarin red staining, and RT‒PCR analysis.ResultsLL-37 has the potential to enhance the migration of DPSCs. In an inflammatory microenvironment, LL-37 can suppress the expression of genes associated with inflammation and aging, such as TNF-α, IL-1β, IL-6, P21, P38 and P53. Moreover, it promotes odontogenic differentiation in DPSCs by increasing ALP activity, increasing calcium nodule formation, and increasing the expression of dentin-related genes such as DMP1, DSPP and BSP.ConclusionThese findings suggest that the polypeptide LL-37 facilitates the migration of DPSCs and plays a crucial role in resolving inflammation and promoting cell differentiation within an inflammatory microenvironment. Consequently, LL-37 has promising potential as an innovative therapeutic approach for managing inflammatory dental pulp conditions.
Project description:In addition to bone, the dentin-pulp complex is also influenced by menopause, showing a decreased regenerative capacity. High levels of follicle-stimulating hormone (FSH) during menopause could directly regulate bone metabolism. Here, the role of FSH in the odontogenic differentiation of the dentin-pulp complex was investigated. Dental pulp stem cells (DPSCs) were isolated. CCK-8 assays, cell apoptosis assays, Western blotting (WB), real-time RT-PCR, alkaline phosphatase activity assays, and Alizarin Red S staining were used to clarify the effects of FSH on the proliferation, apoptosis and odontogenic differentiation of the DPSCs. MAPK pathway-related factors were explored by WB assays. FSH and its inhibitor were used in OVX rats combined with a direct pulp-capping model. HE and immunohistochemistry were used to detect reparative dentin formation and related features. The results indicated that FSH significantly decreased the odontogenic differentiation of the DPSCs without affecting cell proliferation and apoptosis. Moreover, FSH significantly activated the JNK signalling pathway, and JNK inhibitor partly rescued the inhibitory effect of FSH on DPSC differentiation. In vivo, FSH treatment attenuated the dentin bridge formation and mineralization-related protein expression in the OVX rats. Our findings indicated that FSH reduced the odontogenic capacity of the DPSCs and was involved in reparative dentinogenesis during menopause.
Project description:Background and objectivesDental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na+-coupled HCO3- transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms.Methods and resultsDPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 μM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation.ConclusionsNBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.
Project description:IntroductionOdontogenic differentiation of human dental pulp stem cells (hDPSCs) is a key step of pulp regeneration. Recent studies showed that circular RNAs (circRNAs) have many biological functions and that competing endogenous RNA (ceRNA) is their most common mechanism of action. However, the role of circRNAs in hDPSCs during odontogenesis is still unclear.MethodsIsolated hDPSCs were cultured in essential and odontogenic medium. Total RNA was extracted after 14 days of culture, and then, microarray analysis was performed to measure the differential expressions of circRNAs. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was then performed to validate the microarray results. Based on microarray data from this study and available in the database, a ceRNA network was constructed to investigate the potential function of circRNAs during odontogenesis. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential correlation between signaling pathways and circRNAs. In addition, qRT-PCR and Western blot analysis were used to explore the function of hsa_circRNA_104101.ResultsWe found 43 upregulated circRNAs and 144 downregulated circRNAs during the odontogenic differentiation process (fold change > 1.5 and <-1.5, respectively; P < 0.05). qRT-PCR results were in agreement with the microarray results. Bioinformatic analysis revealed that the Wnt signaling pathway and the TGF-β signaling pathway, as well as the other pathways associated with odontogenic differentiation, were correlated to the differentially expressed circRNAs. hsa_circRNA_104101 was proved to promote the odontogenic differentiation of hDPSCs.ConclusionThis study reported 187 circRNAs that were differentially expressed in hDPSCs during odontogenic differentiation. Bioinformatic analysis of the expression data suggested that circRNA-miRNA-mRNA networks might act as a crucial mechanism for hDPSC odontogenic differentiation, providing a theoretical foundation for the study of pulp regeneration regulation by circRNAs.
Project description:Nitric oxide (NO) is thought to play a pivotal regulatory role in dental pulp tissues under both physiological and pathological conditions. However, little is known about the NO functions in dental pulp stem cells (DPSCs). We examined the direct actions of a spontaneous NO gas-releasing donor, NOC-18, on the odontogenic capacity of rat DPSCs (rDPSCs). In the presence of NOC-18, rDPSCs were transformed into odontoblast-like cells with long cytoplasmic processes and a polarized nucleus. NOC-18 treatment increased alkaline phosphatase activity and enhanced dentin-like mineralized tissue formation and the expression levels of several odontoblast-specific genes, such as runt related factor 2, dentin matrix protein 1 and dentin sialophosphoprotein, in rDPSCs. In contrast, carboxy-PTIO, a NO scavenger, completely suppressed the odontogenic capacity of rDPSCs. This NO-promoted odontogenic differentiation was activated by tumor necrosis factor-NF-κB axis in rDPSCs. Further in vivo study demonstrated that NOC-18-application in a tooth cavity accelerated tertiary dentin formation, which was associated with early nitrotyrosine expression in the dental pulp tissues beneath the cavity. Taken together, the present findings indicate that exogenous NO directly induces the odontogenic capacity of rDPSCs, suggesting that NO donors might offer a novel host DPSC-targeting alternative to current pulp capping agents in endodontics.
Project description:BackgroundElucidating the mechanism of odontogenic differentiation of human dental pulp stem cells (hDPSCs) is the key to in-depth mastery and development of regenerative endodontic procedures (REPs). In odontogenic differentiation, lncRNAs have a regulatory role. The goal of this research is to determine the involvement of short nucleolar RNA host gene 1 (SNHG1) in hDPSCs' odontogenic differentiation and the mechanism that underpins it.MethodshDPSCs were isolated from the dental pulp tissue of healthy immature permanent teeth. Follow-up experiments were performed when the third generation of primary cells were transfected. The proliferation ability was measured by CCK-8. The biological effects of SNHG1 and miR-328-3p were determined by real-time quantitative polymerase chain reaction (qRT-PCR), western blot (WB), alkaline phosphatase (ALP) staining and activity, alizarin red S staining (ARS) and quantification, and immunofluorescence staining. The binding of SNHG1 and miR-328-3p was confirmed using a dual-luciferase reporter assay. qRT-PCR and WB were used to determine whether the canonical Wnt/β-catenin pathway was activated.ResultsOn the 0th, 3rd, and 7th days of odontogenic differentiation of hDPSCs, SNHG1 showed a gradual up-regulation trend. SNHG1 overexpression enhanced the mRNA and protein expression of dentin sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1) and ALP. We found that SNHG1 could bind to miR-328-3p. miR-328-3p inhibited the odontogenic differentiation of hDPSCs. Therefore, miR-328-3p mimics rescued the effect of SNHG1 overexpression on promoting odontogenic differentiation. In addition, SNHG1 inhibited Wnt/β-catenin pathway via miR-328-3p in odontogenic differentiation of hDPSCs.ConclusionlncRNA SNHG1 inhibits Wnt/β-catenin pathway through miR-328-3p and then promotes the odontogenic differentiation of hDPSCs.
Project description:Dental pulp stem cells (DPSCs) have great potential for use in tissue engineering (TE)-based dental treatments. Electrical stimulation (EStim) has been shown to influence cellular functions that could play an important role in the success of TE treatments. Despite many recent studies focused on DPSCs, few have investigated the effect EStim has on these cells. The aim of this research was to investigate the effects of direct current (DC) EStim on osteo-/odontogenic differentiation of DPSCs. To do so cells were isolated from male Sprague Dawley rats (7-8 weeks old), and phenotype characterization and multilineage differentiation analysis were conducted to verify their "stemness." Different voltages of DC EStim were administrated 1 h/day for 7 days, and the effect of EStim on DPSC osteo-/odontogenic differentiation was assessed by measuring calcium and collagen deposition, alkaline phosphatase (ALP) activity, and expression of osteo- and odontogenic marker genes at days 7 and 14 of culture. We found that while 10 and 50 mV/mm of EStim had no effect on cell number or metabolic activity, 100 mV/mm caused a significant reduction in cell number, and 150 mV/mm resulted in cell death. Despite increased gene expression of osteo-/odontogenic gene markers, Osteocalcin, RunX2, BSP, and DMP1, at day 7 in EStim treated cells, 50 mV/mm of EStim decreased collagen deposition and ALP activity at both time points, and calcium deposition was found to be lower at day 14. In conclusion, under the conditions tested, EStim appears to impair DPSC osteo-/odontogenic differentiation. Additional studies are needed to further characterize and understand the mechanisms involved in DPSC response to EStim, with an eye toward its potential use in TE-based dental treatments.
Project description:Healthy pulp tissue plays an important role in normal function and long-term retention of teeth. Mesoporous bioactive glass (MBG) as a kind of regenerative biomaterials shows the potential in preserving the vital pulp. In this study, MBG prepared by organic template method combined with sol-gel method were used in human dental pulp cell culture and ectopic mineralization experiment. Real-Time PCR was used to explore its ability to induce odontogenic differentiation of dental pulp cells. MBG and rat crowns were implanted under the skin of nude mice for 4 weeks to observe the formation of pulp dentin complex. We found that MBG can release Si and Ca ions and has a strong mineralization activity in vitro. The co-culture of MBG with human dental pulp cells promoted the expression of DMP-1 (dentin matrix protein-1) and ALP (alkalinephosphatase) without affecting cell proliferation. After 4 weeks of subcutaneous implantation in nude mice, the formation of hard tissue with regular structure under the material could be seen, and the structure was similar to dentin tubules. These results indicate that MBG can induce the differentiation of dental pulp cells and the formation of dental pulp-dentin complex and has the potential to promote the repair and regeneration of dental pulp injuries.
Project description:Pulp capping, or placing dental materials directly onto the vital pulp tissues of affected teeth, is a dental procedure that aims to regenerate reparative dentin. Several pulp capping materials are clinically being used, and calcium ion (Ca(2+)) released from these materials is known to mediate reparative dentin formation. ORAI1 is an essential pore subunit of store-operated Ca(2+) entry (SOCE), which is a major Ca(2+) influx pathway in most nonexcitable cells. Here, we evaluated the role of ORAI1 in mediating the odontogenic differentiation and mineralization of dental pulp stem cells (DPSCs). During the odontogenic differentiation of DPSCs, the expression of ORAI1 increased in a time-dependent manner. DPSCs knocked down with ORAI1 shRNA (DPSC/ORAI1sh) or overexpressed with dominant negative mutant ORAI1(E106Q) (DPSC/E106Q) exhibited the inhibition of Ca(2+) influx and suppression of odontogenic differentiation and mineralization as demonstrated by alkaline phosphatase (ALP) activity/staining as well as alizarin red S staining when compared with DPSCs of their respective control groups (DPSC/CTLsh and DPSC/CTL). The gene expression for odontogenic differentiation markers such as osteocalcin, bone sialoprotein, and dentin matrix protein 1 (DMP1) was also suppressed. When DPSC/CTL or DPSC/E106Q cells were subcutaneously transplanted into nude mice, DPSC/CTL cells induced mineralized tissue formation with significant increases in ALP and DMP1 staining in vivo, whereas DPSC/E106Q cells did not. Collectively, our data showed that ORAI1 plays critical roles in the odontogenic differentiation and mineralization of DPSCs by regulating Ca(2+) influx and that ORAI1 may be a therapeutic target to enhance reparative dentin formation.