Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.
Ontology highlight
ABSTRACT: Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.
Project description:The low-power, high-performance graphene/ZnO Schottky photodiodes were demonstrated through the direct sputter-growth of ZnO onto the thermally-cleaned graphene/SiO2/Si substrate at room temperature. Prior to the growth of ZnO, a thermal treatment of the graphene surface was performed at 280 °C for 10 min in a vacuum to desorb chemical residues that may serve as trap sites at the interface between graphene and ZnO. The device clearly showed a rectifying behavior with the Schottky barrier of ≈0.61 eV and an ideality factor of 1.16. Under UV illumination, the device exhibited the excellent photoresponse characteristics in both forward and reverse bias regions. When illuminating UV light with the optical power density of 0.62 mW/cm2, the device revealed a high on/off current ratio of >103 even at a low bias voltage of 0.1 V. For the transient characteristics upon switching of UV light pulses, the device represented a fast and stable photoresponse (i.e., rise time: 0.16 s, decay time: 0.19 s). From the temperature-dependent current-voltage characteristics, such an outstanding photoresponse characteristic was found to arise from the enhanced Schottky barrier homogeneity via the thermal treatment of the graphene surface. The results suggest that the ZnO/graphene Schottky diode holds promise for the application in high-performance low-power UV photodetectors.
Project description:Graphene has attracted considerable interest as a potential new electronic material. With its high carrier mobility, graphene is of particular interest for ultrahigh-speed radio-frequency electronics. However, conventional device fabrication processes cannot readily be applied to produce high-speed graphene transistors because they often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance. Here we report an approach to the fabrication of high-speed graphene transistors with a self-aligned nanowire gate to prevent such degradation. A Co(2)Si-Al(2)O(3) core-shell nanowire is used as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of the nanowire gate preserves the high carrier mobility in graphene, and the self-alignment process ensures that the edges of the source, drain and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes, thus minimizing access resistance. It therefore allows for transistor performance not previously possible. Graphene transistors with a channel length as low as 140?nm have been fabricated with the highest scaled on-current (3.32?mA??m(-1)) and transconductance (1.27?mS??m(-1)) reported so far. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices have a high intrinsic cut-off (transit) frequency of f(T) = 100-300?GHz, with the extrinsic f(T) (in the range of a few gigahertz) largely limited by parasitic pad capacitance. The reported intrinsic f(T) of the graphene transistors is comparable to that of the very best high-electron-mobility transistors with similar gate lengths.
Project description:Nanowire field emitters have great potential for use as large-area gated field emitter arrays (FEAs). However, the micrometer-scale cathode patterns in gated FEA devices will reduce regulation of the gate voltage and limit the field emission currents of these devices as a result of field-screening effect among the neighboring nanowires. In this article, a ring-shaped ZnO nanowire pad is proposed to overcome this problem. Diode measurements show that the prepared ring-shaped ZnO nanowire pad arrays shows uniform emission with a turn-on field of 5.9 V/µm and a field emission current density of 4.6 mA/cm2 under an applied field of 9 V/µm. The ZnO nanowire pad arrays were integrated into coplanar-gate FEAs and enhanced gate-controlled device characteristics were obtained. The gate-controlled capability was studied via microscopic in-situ measurements of the field emission from the ZnO nanowires in the coplanar-gate FEAs. Based on the results of both simulations and experiments, we attributed the enhanced gate-controlled device capabilities to more efficient emission of electrons from the ZnO nanowires as a result of the increase edge area by designing ring-shaped ZnO nanowire pad. The results are important to the realization of large-area gate-controlled FEAs based on nanowire emitters for use in vacuum electronic devices.
Project description:We demonstrate a facile way to fabricate an array of gate-controllable UV sensors based on assembled zinc oxide nanowire (ZnO NW) network field-effect transistor (FET). This was realized by combining both molecular surface programmed patterning and selective NW assembly on the polar regions avoiding the nonpolar regions, followed by heat treatment at 300 °C to ensure stable contact between NWs. The ZnO NW network FET devices showed typical n-type characteristic with an on-off ratio of 105, transconductance around 47 nS, and mobility around 0.175 cm2 V- 1 s- 1. In addition, the devices showed photoresponsive behavior to UV light that can be controlled by the applied gate voltage. The photoresponsivity was found to be linearly proportional to the channel voltage Vds, showing maximum photoresponsivity at Vds = 7 V.
Project description:A fully rubbery stretchable diode, particularly entirely based on stretchy materials, is a crucial device for stretchable integrated electronics in a wide range of applications, ranging from energy to biomedical, to integrated circuits, and to robotics. However, its development has been very nascent. Here, we report a fully rubbery Schottky diode constructed all based on stretchable electronic materials, including a liquid metal cathode, a rubbery semiconductor, and a stretchable anode. The rubbery Schottky diode exhibited a forward current density of 6.99 × 10-3 A/cm2 at 5 V and a rectification ratio of 8.37 × 104 at ±5 V. Stretchy rectifiers and logic gates based on the rubbery Schottky diodes were developed and could retain their electrical performance even under 30% tensile stretching. With the rubbery diodes, fully rubbery integrated electronics, including an active matrix multiplexed tactile sensor and a triboelectric nanogenerator-based power management system, are further demonstrated.
Project description:The structure of a gate-controlled graphene/germanium hybrid photodetector was optimized by splitting the active region to achieve highly sensitive infrared detection capability. The strengthened internal electric field in the split active junctions enabled efficient collection of photocarriers, resulting in a responsivity of 2.02 A W-1 and a specific detectivity of 5.28 × 1010 Jones with reduced dark current and improved external quantum efficiency; these results are more than doubled compared with the responsivity of 0.85 A W-1 and detectivity of 1.69 × 1010 Jones for a single active junction device. The responsivity of the optimized structure is 1.7, 2.7, and 39 times higher than that of previously reported graphene/Ge with Al2O3 interfacial layer, gate-controlled graphene/Ge, and simple graphene/Ge heterostructure photodetectors, respectively.
Project description:We report on a high-brightness ultraviolet (UV) nanoscale light source. The light emission diodes are constructed with graphene/ZnO nanowire/p-GaN vertical junctions, which exhibit strong UV electroluminescence (EL) emissions centered at a wavelength of 397 nm at one end of the ZnO nanowire. Compared to the horizontal heterojunction, the vertical junction based on the ZnO nanowire increases the interface area of the heterojunction along with a high-quality interface, thus making the device robust under a large excitation current. In this structure, transparent flexible graphene is used as the top electrode, which can effectively improve performance by increasing the carrier injection area. Moreover, by analyzing the relationship between the integrated light intensity and applied bias, a superlinear dependency with a slope of 3.99 is observed, which means high electrical-to-optical conversion efficiency. Three electron-hole irradiation recombination processes are distinguished according to the EL emission spectra.
Project description:In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm(2). Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device.
Project description:A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.
Project description:A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires.