The influence of atopy and asthma on immune responses in inner-city adults.
Ontology highlight
ABSTRACT: Asthma in the inner-city population is usually atopic in nature, and is associated with significant morbidity and mortality. However, the underlying immune abnormalities that underlie asthma in urban adults have not been well defined. We investigated the influence of atopy and asthma on cytokine responses of inner-city adult women to define immune abnormalities associated with asthma and atopy. Blood samples were collected from 509 of 606 inner-city women enrolled in the Urban Environment and Childhood Asthma (URECA) study. We tested for associations between atopy and asthma status and cytokine responses in peripheral blood mononuclear cells incubated ex vivo with a panel of innate and adaptive immune stimulants. Atopic subjects had heightened Th2 cytokine responses (IL-4, IL-5, IL-13) to cockroach and dust mite antigens, tetanus toxoid, and phytohemagglutinin (P < 0.05 for all). Differences in cytokine responses were greatest in response to stimulation with cockroach and dust mite. In a multivariate analysis, atopy was broadly related to increased Th2-like responses to all antigens and PHA, while asthma was only weakly related to mitogen-induced IL-4 and IL-5 responses. There were few asthma or allergy-related differences in responses to innate stimuli, including IFN-α and IFN-γ responses. In this inner-city adult female population, atopy is associated with enhanced Th2 responses to allergens and other stimuli, and there was little or no additional signal attributable to asthma. In particular, these data indicate that altered systemic interferon and innate immune responses are not associated with allergies and/or asthma in inner-city women.
Project description:BackgroundChildren with asthma in low-income urban areas have high morbidity. Phenotypic analysis in these children is lacking, but may identify characteristics to inform successful tailored management approaches.ObjectiveWe sought to identify distinct asthma phenotypes among inner-city children receiving guidelines-based management.MethodsNine inner-city asthma consortium centers enrolled 717 children aged 6 to 17 years. Data were collected at baseline and prospectively every 2 months for 1 year. Participants' asthma and rhinitis were optimally managed by study physicians on the basis of guidelines. Cluster analysis using 50 baseline and 12 longitudinal variables was performed in 616 participants completing 4 or more follow-up visits.ResultsFive clusters (designated A through E) were distinguished by indicators of asthma and rhinitis severity, pulmonary physiology, allergy (sensitization and total serum IgE), and allergic inflammation. In comparison to other clusters, cluster A was distinguished by lower allergy/inflammation, minimally symptomatic asthma and rhinitis, and normal pulmonary physiology. Cluster B had highly symptomatic asthma despite high step-level treatment, lower allergy and inflammation, and mildly altered pulmonary physiology. Cluster C had minimally symptomatic asthma and rhinitis, intermediate allergy and inflammation, and mildly impaired pulmonary physiology. Clusters D and E exhibited progressively higher asthma and rhinitis symptoms and allergy/inflammation. Cluster E had the most symptomatic asthma while receiving high step-level treatment and had the highest total serum IgE level (median, 733 kU/L), blood eosinophil count (median, 400 cells/mm3), and allergen sensitizations (15 of 22 tested).ConclusionsAllergy distinguishes asthma phenotypes in urban children. Severe asthma often coclusters with highly allergic children. However, a symptomatic phenotype with little allergy or allergic inflammation was identified.
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks.
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks. peripheral blood mononuclear cells (PBMCs) from 97 atopic asthmatic and 97 nonatopic nonasthmatic children
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks.
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks. peripheral blood mononuclear cells (PBMCs) from 97 atopic asthmatic and 97 nonatopic nonasthmatic children
Project description:BackgroundEpigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations.ObjectiveWe hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma.MethodsWe compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients.ResultsComparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city.ConclusionsOur results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma.
Project description:BACKGROUND:Intensive care unit (ICU) admission is a risk factor for fatal asthma. Little is known about risk factors for pediatric ICU admissions for asthma. OBJECTIVE:To examine characteristics of underserved minority children with prior ICU admissions for asthma. METHODS:Baseline survey data, salivary cotinine levels, and allergen specific IgE serologic test results were obtained from children with uncontrolled asthma enrolled in a randomized clinical trial of a behavioral education environmental control intervention. Characteristics of children with and without prior ICU admission were compared using χ2 and t tests. Logistic regression assessed significance of higher odds of prior ICU admission comparing factor-level categories. RESULTS:Patients included 222 primarily African American (93.7%), male (56%), Medicaid-insured (92.8%) children with a mean (SD) age of 6.4 (2.7) years with uncontrolled asthma. Most (57.9%) had detectable cotinine levels, 82.6% were sensitized to more than 1 environmental allergen, and 27.9% had prior ICU admissions. Prior ICU patients were more likely to be very poor (<$10,000 per year) and sensitized to more than 1 allergen tested (most importantly mouse) (P < .05). Allergen sensitization in the groups did not differ for cockroach, cat, dog, Alternaria, Aspergillus, dust mite, grass, or tree. Although more ICU patients received combination controller therapy, they also overused albuterol. Only 27.4% of ICU patients received specialty care in the previous 2 years, which was not significantly different from non-ICU patients. CONCLUSION:Children with high mortality risk, including history of ICU admission, were twice as likely to live in extreme poverty, have atopy (particularly mouse allergen), use combination controller therapy, and overuse albuterol. TRIAL REGISTRATION:ClinicalTrials.gov Identifier: NCT01981564.