Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study.
Ontology highlight
ABSTRACT: Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells' behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.
Project description:We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples.
Project description:Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Project description:Local anesthetics (LAs) are known to act on membrane level; however, the molecular mechanism of their activity is still not fully understood. One hypothesis holds that these drugs can incorporate into lipid membrane of nerve cells and in this way change conformation of channel proteins responsible for transport of sodium ions. However, the action of anesthetics is not limited to nerve cells. These drugs also affect other types of cells and organelles, causing severe side effects. In this paper, we applied Langmuir monolayers-as model of cellular membranes-and investigated interactions between selected amide-type local anesthetics (lidocaine prilocaine, mepivacaine and ropivacaine, in the form of hydrochlorides) and lipid components of natural membranes: cholesterol, POPC and cardiolipin (CL) and their mixtures (POPC/cholesterol and POPC/CL/cholesterol), which can serve as simplified models of nerve cell membranes, erythrocytes, and mitochondria. The influence of the drug was monitored by registering the surface pressure (π) as a function of surface area per molecule (A) in a monolayer in the presence of the drug in the subphase. The structure of lipid monolayers on subphases containing and devoid of the studied drugs were visualized with Brewster angle microscopy (BAM). Langmuir monolayer studies complemented with surface visualization technique reveal the expansion and fluidization of lipid monolayers, with the most pronounced effect observed for cardiolipin. In mixed systems, the effect of LAs was found to depend on cholesterol proportion. The observed fluidization of membranes by local anesthetics may negatively affect cells functioning and therefore can explain side effects of these drugs both on the cardiovascular and nervous systems.
Project description:One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown.
Project description:At low mole fractions, cholesterol segregates into 10- to 100-nm-diameter nanodomains dispersed throughout primarily dipalmitoylphosphatidylcholine (DPPC) domains in mixed DPPC:cholesterol monolayers. The nanodomains consist of 6:1 DPPC:cholesterol "complexes" that decorate and lengthen DPPC domain boundaries, consistent with a reduced line tension, λ. The surface viscosity of the monolayer, ηs, decreases exponentially with the area fraction of the nanodomains at fixed surface pressure over the 0.1- to 10-Hz range of frequencies common to respiration. At fixed cholesterol fraction, the surface viscosity increases exponentially with surface pressure in similar ways for all cholesterol fractions. This increase can be explained with a free-area model that relates ηs to the pure DPPC monolayer compressibility and collapse pressure. The elastic modulus, G', initially decreases with cholesterol fraction, consistent with the decrease in λ expected from the line-active nanodomains, in analogy to 3D emulsions. However, increasing cholesterol further causes a sharp increase in G' between 4 and 5 mol% cholesterol owing to an evolution in the domain morphology, so that the monolayer is elastic rather than viscous over 0.1-10 Hz. Understanding the effects of small mole fractions of cholesterol should help resolve the controversial role cholesterol plays in human lung surfactants and may give clues as to how cholesterol influences raft formation in cell membranes.
Project description:Farber disease is an inherited metabolic disorder caused by mutations in the acid ceramidase gene, which leads to ceramide accumulation in lysosomes. Farber disease patients display a wide variety of symptoms with most patients eventually displaying signs of nervous system dysfunction. We now present a novel tool that could potentially be used to distinguish between the milder and more severe forms of the disease, namely, an antibody that recognizes a mixed monolayer or bilayer of cholesterol:C16-ceramide, but does not recognize either ceramide or cholesterol by themselves. This antibody has previously been used to detect cholesterol:C16-ceramide domains in a variety of cultured cells. We demonstrate that levels of cholesterol:C16-ceramide domains are significantly elevated in fibroblasts from types 4 and 7 Farber disease patients, and that levels of the domains can be modulated by either reducing ceramide or cholesterol levels. Moreover, these domains are located in membranes of the endomembrane system, and also in two unexpected locations, namely, the mitochondria and the plasma membrane. This study suggests that the ceramide that accumulates in severe forms of Farber disease cells is sequestered to distinct membrane subdomains, which may explain some of the cellular pathology observed in this devastating lysosomal storage disease.
Project description:Since solid-liquid interfacial nanobubbles (INBs) were first imaged, their long-term stability and large contact angle have been perplexing scientists. This study aimed to investigate the influence of internal gas density and external gas monolayers on the contact angle and stability of INB using molecular dynamics simulations. First, the contact angle of a water droplet was simulated at different nitrogen densities. The results showed that the contact angle increased sharply with an increase in nitrogen density, which was mainly caused by the decrease in solid-gas interfacial tension. However, when the nitrogen density reached 2.57 nm-3, an intervening gas monolayer (GML) was formed between the solid and water. After the formation of GML, the contact angle slightly increased with increasing gas density. The contact angle increased to 180° when the nitrogen density reached 11.38 nm-3, indicating that INBs transformed into a gas layer when they were too small. For substrates with different hydrophobicities, the contact angle after the formation of GML was always larger than 140° and it was weakly correlated with substrate hydrophobicity. The increase in contact angle with gas density represents the evolution of contact angle from macro- to nano-bubble, while the formation of GML may correspond to stable INBs. The potential of mean force curves demonstrated that the substrate with GML could attract gas molecules from a longer distance without the existence of a potential barrier compared with the bare substrate, indicating the potential of GML to act as a gas-collecting panel. Further research indicated that GML can function as a channel to transport gas molecules to INBs, which favors stability of INBs. This research may shed new light on the mechanisms underlying abnormal contact angle and long-term stability of INBs.
Project description:Graphene possesses extraordinary properties that promise great potential in biomedicine. However, fully leveraging these properties requires close contact with the cell surface, raising the concern of unexpected biological consequences. Computational models have demonstrated that graphene preferentially interacts with cholesterol, a multifunctional lipid unique to eukaryotic membranes. Here we demonstrate an interaction between graphene and cholesterol. We find that graphene increases cell membrane cholesterol and potentiates neurotransmission, which is mediated by increases in the number, release probability, and recycling rate of synaptic vesicles. In fibroblasts grown on graphene, we also find an increase in cholesterol, which promotes the activation of P2Y receptors, a family of receptor regulated by cholesterol. In both cases, direct manipulation of cholesterol levels elucidates that a graphene-induced cholesterol increase underlies the observed potentiation of each cell signaling pathway. These findings identify cholesterol as a mediator of graphene's cellular effects, providing insight into the biological impact of graphene.
Project description:Objective:In vivo studies suggest that intestinal barrier integrity is dependent on mitochondrial ATP production. Here, we aim to provide mechanistic support, using an in vitro model mimicking the oxidative in vivo situation. Methods: Human Caco-2 cells were cultured for 10 days in culture flasks or for 14 days on transwell inserts in either glucose-containing or galactose-containing medium. Mitochondria were visualized and cellular respiration and levels of oxidative phosphorylation (OXPHOS) proteins were determined. Mitochondrial ATP depletion was induced using CCCP, rotenone, or piericidin A (PA). Monolayer permeability was assessed using transepithelial electrical resistance (TEER) and fluorescein flux. Gene expression and cellular distribution of tight junction proteins were analyzed. Results: Caco-2 cells cultured in galactose-containing, but not in glucose-containing, medium showed increased mitochondrial connectivity, oxygen consumption rates and levels of OXPHOS proteins. Inhibition of mitochondrial ATP production using CCCP, rotenone or PA resulted in a dose-dependent increase in Caco-2 monolayer permeability. In-depth studies with PA showed a six fold decrease in cellular ATP and revealed increased gene expression of tight junction proteins (TJP) 1 and 2, occludin, and claudin 1, but decreased gene expression of claudin 2 and 7. Of these, claudin 7 was clearly redistributed from the cellular membrane into the cytoplasm, while the others were not (TJP1, occludin) or slightly (claudin 2, actin) affected. In vivo studies suggest that intestinal barrier integrity is dependent on mitochondrial ATP production. Here, we aim to provide mechanistic support, using an in vitro model mimicking the oxidative in vivo situation. Conclusions: Well-functioning mitochondria are essential for maintaining cellular energy status and monolayer integrity of galactose grown Caco-2 cells. Energy depletion-induced Caco-2 monolayer permeability may be facilitated by changes in the distribution of claudin 7.