Pathogenesis of Bacterial Vaginosis: Discussion of Current Hypotheses.
Ontology highlight
ABSTRACT: In April 2015, the Division of Microbiology and Infectious Diseases of the National Institute of Allergy and Infectious Diseases hosted an experts technical consultation on bacterial vaginosis (BV), where data regarding controversies over the pathogenesis of BV were discussed. The discussion on the epidemiology and pathogenesis of BV is presented here, and several hypotheses on its pathogenesis are critiqued. Rigorous hypothesis-driven studies are needed to ultimately determine the cause of BV. This information is vital for the prevention and control of this important infection and its adverse public health consequences.
Project description:A healthy female genital tract harbors a microbiome dominated by lactic acid and hydrogen peroxide producing bacteria, which provide protection against infections by maintaining a low pH. Changes in the bacterial compositions of the vaginal microbiome can lead to bacterial vaginosis (BV), which is often associated with vaginal inflammation. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STIs) like human immunodeficiency virus (HIV) and affects women's reproductive health negatively. In pregnant women, BV can lead to chorioamnionitis and adverse pregnancy outcomes, including preterm premature rupture of the membranes and preterm birth. In order to manage BV effectively, good diagnostic procedures are required. Traditionally clinical and microscopic methods have been used to diagnose BV; however, these methods require skilled staff and time and suffer from reduced sensitivity and specificity. New diagnostics, including highly sensitive and specific point-of-care (POC) tests, treatment modalities and vaccines can be developed based on the identification of biomarkers from the growing pool of vaginal microbiome and vaginal metabolome data. In this review the current and future diagnostic avenues will be discussed.
Project description:Purpose of reviewThe cause of bacterial vaginosis, the most common cause of vaginal discharge in women, remains controversial. We recently published an updated conceptual model on bacterial vaginosis pathogenesis, focusing on the roles of Gardnerella vaginalis and Prevotella bivia as early colonizers and Atopobium vaginae and other bacterial vaginosis-associated bacteria (BVAB) as secondary colonizers in this infection. In this article, we extend the description of our model to include a discussion on the role of host-vaginal microbiota interactions in bacterial vaginosis pathogenesis.Recent findingsAlthough G. vaginalis and P. bivia are highly abundant in women with bacterial vaginosis, neither induce a robust inflammatory response from vaginal epithelial cells. These early colonizers may be evading the immune system while establishing the bacterial vaginosis biofilm. Secondary colonizers, including A. vaginae, Sneathia spp., and potentially other BVAB are more potent stimulators of the host-immune response to bacterial vaginosis and likely contribute to its signs and symptoms as well as its adverse outcomes.SummaryElucidating the cause of bacterial vaginosis has important implications for diagnosis and treatment. Our current bacterial vaginosis pathogenesis model provides a framework for key elements that should be considered when designing and testing novel bacterial vaginosis diagnostics and therapeutics.
Project description:Bacterial vaginosis (BV) is the most common cause of vaginal discharge. It is associated with an increased risk of preterm delivery, pelvic inflammatory disease, and an increased risk of acquisition of sexually transmitted infections including human immunodeficiency virus (HIV). The epidemiology of BV supports sexual transmission. However, its etiology remains unknown. At the center of the debate is whether BV is caused by a primary pathogen or a polymicrobial consortium of microorganisms that are sexually transmitted. We previously published a conceptual model hypothesizing that BV is initiated by sexual transmission of Gardnerella vaginalis. Critics of this model have iterated that G. vaginalis is found in virginal women and in sexually active women with a normal vaginal microbiota. In addition, colonization does not always lead to BV. However, recent advances in BV pathogenesis research have determined the existence of 13 different species within the genus Gardnerella. It may be that healthy women are colonized by nonpathogenic Gardnerella species, whereas virulent strains are involved in BV development. Based on our results from a recent prospective study, in addition to an extensive literature review, we present an updated conceptual model for the pathogenesis of BV that centers on the roles of virulent strains of G. vaginalis, as well as Prevotella bivia and Atopobium vaginae.
Project description:Practitioners and patients alike widely recognize the limitations of current therapeutic approaches to the treatment of bacterial vaginosis (BV). Options remain extremely limited, and our inability to prevent the frequently, often relentless symptomatic recurrences of BV and to reduce serious sequelae such as preterm delivery, remains an acknowledged but unresolved shortcoming. Our incomplete understanding of the pathophysiology of this unique form of vaginal dysbiosis has been a significant impediment to developing optimal treatment and prevention approaches. New drugs have not been forthcoming and are not likely to be available in the immediate future; hence, reliance on the optimal use of available agents has become essential as improvised often unproven regimens are implemented. In this review, we will explore the limitations of currently recommended therapies, with a particular focus on the contribution of reinfection and pathogen persistence to BV recurrence, and the development of interventions that target these mechanisms. Ultimately, to achieve sustained cure and effectiveness against BV-associated sequelae, it is possible that we will need approaches that combine antimicrobials with biofilm-disrupting agents and partner treatments in those at risk of reinfection.
Project description:Despite the availability of a number of oral and intravaginal antibiotic medications for the treatment of bacterial vaginosis (BV), management of this condition remains challenging. Recurrent BV occurs in >50% of patients receiving guideline-recommended treatments. This may be due to persistence or resurgence of the BV biofilm after treatment cessation, failure to reestablish an optimal vaginal microbiome after treatment, reinfection from an untreated sexual partner, or a combination of these factors. Nonadherence to multidose BV therapies may potentially contribute to recurrent BV, although there are no published data that directly assess the role of nonadherence to poor treatment outcomes and recurrent BV. There is a need for studies of BV treatment adherence in real-world settings as well as studies to explore the relationship between treatment adherence and recurrence. This review explores challenges associated with diagnosing and treating BV, current multidose antibiotic treatment options, newer single-dose treatment options, and ways to potentially maximize treatment success for this common vaginal infection.
Project description:UNLABELLED:Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. IMPORTANCE:Bacterial vaginosis (BV) is a common but highly enigmatic condition that is associated with adverse outcomes for women and their neonates. Small molecule metabolites in the vagina may influence host physiology, affect microbial community composition, and impact risk of adverse health outcomes, but few studies have comprehensively studied the metabolomics profile of BV. Here, we used mass spectrometry to link specific metabolites with particular bacteria detected in the human vagina by PCR. BV was associated with strong metabolic signatures across multiple pathways affecting amino acid, carbohydrate, and lipid metabolism, highlighting the profound metabolic changes in BV. These signatures were associated with the presence and concentrations of particular vaginal bacteria, including some bacteria yet to be cultivated, thereby providing clues as to the microbial origin of many metabolites. Insights from this study provide opportunities for developing new diagnostic markers of BV and novel approaches for treatment or prevention of BV.
Project description:BackgroundBacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women.MethodsTo examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium.ResultsThe prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV.ConclusionThe BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria.
Project description:The E2F family of transcription factors is typically described as binding the family consensus sequence TTTSSCGC, were S is G or C. Analysis of ChIP-seq experiments, however, reveals that this consensus sequence is found in only 10% of ChIP-seq peaks, suggesting that the mechanism for E2F sequence recognition cannot be explained using previous assumptions. In order to better understand E2F sequence specificity, we performed high-throughput Universal Protein Binding Microarray experiments to obtain the relative binding affinity for every possible 8-mer, as well a large number of bound and unbound probes intheir native genomic sequence context. Our results show that while the consensus sequence is bound with relatively high affinity, numerous other 8-mers, many distinctly different from the consensus motif, are bound with similar or greater affinity. These data suggest that the mechanism for E2F sequence specificity is likely complex, and cannot readily be explained through a simple consensus sequence. Because of this, complex regression models were created using the bound and unbound probe binding affinities, and were able to predict binding in vivo, where the consensus sequence and varoius E2F PWMs were not.
Project description:Due to the increasing demand for clinical testing of infectious diseases at the point-of-care, the global market claims alternatives for rapid diagnosis tools such as disposable biosensors, avoiding the need for specialized laboratories and skilled personnel. Bacterial vaginosis (BV) is an infectious disease that commonly affects reproductive-age women and predisposes the infection of sexually transmitted diseases. Especially in asymptomatic cases, BV can lead to pelvic inflammatory conditions, postpartum endometritis, and preterm labor. Conventionally, BV diagnosis involves the microscopic analysis of vaginal swab samples; it thus requires highly trained personnel. In response, we report a novel microfluidic paper-based analytical device for BV diagnosis. Sialidase, a biomarker overexpressed in BV, was detected by exploiting an immunosensing mechanism previously discovered by our team. This technology employs a graphene oxide-coated surface as a quencher of fluorescence; the fluorescence of the immunoprobes that do not experiment immunoreactions (antibody-antigen) are deactivated by graphene oxide via non-radiative energy transfer, whereas those immunoprobes undergoing immunoreactions preserve their photoluminescence due to the distance and the low affinity between the immunocomplex and the graphene oxide-coated surface. Our paper-based test was typically carried out within 20 min, and the sample volume was 6 μL. Besides, it was tested with 14 vaginal swabs specimens to discriminate clinical samples of women with normal microbiota from those with BV. Our disposable device represents a new tool to prevent the consequences of BV.